[スポンサーリンク]

化学者のつぶやき

シクロファン+ペリレンビスイミドで芳香環を認識

 

シクロファンは芳香環の2ヶ所以上が炭素鎖等によって架橋された化合物群であり、分子認識化学分野で最重要分子の一つです。一方、ペリレンビスイミド(Perylene Bisimide: PBI)は優れた光耐久性、高い蛍光量子収率、そして強い分子間スタッキングを有する分子として知られており、絵の具[1]から蛍光イメージング[2]まで幅広い分野で応用されています。

これまで、ペリレンビスイミドをシクロファンの「芳香環」としたPBIシクロファンの合成・物性研究は数多く行われてきましたが[1,2]、平面性の高い芳香環を高認識で取り込めた例は報告されていませんでした。そこで、PBI研究の第一人者であるWürthnerらは、二つのPBIを適切な距離に固定させることで、芳香環を高認識に取り込ませることが可能な、剛直なPBIシクロファンを合成することに成功しました。また、それが顕著な蛍光スイッチ挙動を示すことを見いだしました(図1)。

“A Perylene Bisimide Cyclophane as a “Turn-On” and “Turn-Off” Fluorescence Probe”

Spenst, P.; Würthner, F.;Angew. Chem. Int. Ed. 2015, 54, 10165. DOI: 10.1002/anie.201503542

2015-10-08_17-17-25

図1. 今回合成したPBIシクロファン

合成および性質

Würthnerらは、剛直なPBIシクロファンとしてパラキシレンで架橋された2を設計し、その合成を行いました(図 2)。PBI-1 とパラキシレンジアミンをイミダゾールとピリジン存在下、トルエン中で20時間加熱還流することにより、目的の2を得ました(収率7%)。

Scheme 1: 剛直なシクロファン2の合成

図2 剛直なシクロファン2の合成

 

合成した2のクロロホルム溶液における蛍光量子収率はΦ=0.21でした。これはモノマーのPBIの蛍光量子収率(Φ=0.97)と比較し非常に低い値でした。一方トルエンを溶媒とした場合、2の蛍光量子収率はΦ=0.64まで向上しました。これは、2にトルエン分子(ゲスト分子)が内包されることで2つのPBI間π−π相互作用が弱くなったことが想定されます。

次に2のホスト分子としての機能を評価するため、2のクロロホルム溶液に様々な芳香族炭化水素を加え、その際の発光変化を観測しました。その結果、電子豊富な芳香環状が2に内包された場合、大幅な発光強度の減少が確認されました(図 3a)。一方、電子不足な芳香環が2に内包されると、生成した2の錯体の発光強度が劇的に向上しています(図3b)。つまり、電子豊富な芳香環により、2の蛍光が”off”になり、電子不足な芳香環により、蛍光が”on”になるという蛍光スイッチ挙動がみられました。

 

Figure 1: (a)アントラセンおよび (b)フェニルナフタレンの発光スペクトル変化

図3: (a)アントラセンおよび (b)フェニルナフタレンの発光スペクトル変化

 

この蛍光スイッチ挙動を示す理由を解明するため、著者らはゲスト分子とホスト分子それぞれのHOMO準位に着目しました。まず、ゲスト分子のHOMO−LUMO準位についてのDFT計算を行いました(図 4a)。さらにゲスト分子を内包した際の錯体の蛍光量子収率をプロットしてます(図 4b)。

Figure 2: (a) DFT計算により見積もられたゲスト分子のHOMO−LUMO準位(B3LYP/6-31G(d))(b) ホスト−ゲスト錯体の蛍光量子収率Φのプロット

図 4: (a) DFT計算により見積もられたゲスト分子のHOMO−LUMO準位(B3LYP/6-31G(d))(b) ホスト−ゲスト錯体の蛍光量子収率Φのプロット

 

Figure2の相関関係より、著者らは、2の光励起された後、ゲスト分子からの電子移動の有無が、この蛍光スイッチ挙動に関与していると考えました。つまり、電子不足のゲスト分子が内包された場合は2の光励起されたHOMOにゲスト分子のHOMOからの電子移動が起こりません。そのため2の発光強度が、ゲスト分子がない場合よりも大きくなります。一方で、電子豊富なゲスト分子を挿入した場合はゲスト分子からの電子移動が起こるため、蛍光が妨げられ2の発光強度が小さくなると結論付けました(図5)。

Figure 3: (中央図)蛍光スイッチ挙動のメカニズム。光を照射した際に電子不足な(a)群のゲスト分子が内包されている場合は上図赤色の挙動を、電子豊富な(b)群のゲスト分子が内包されている際は青色の挙動を示す

図5: (中央図)蛍光スイッチ挙動のメカニズム。光を照射した際に電子不足な(a)群のゲスト分子が内包されている場合は上図赤色の挙動を、電子豊富な(b)群のゲスト分子が内包されている際は青色の挙動を示す

 

まとめ

今回著者らは、様々な芳香環を取り込むことが出来るペリレンビスイミドを主骨格とするシクロファン2の合成に初めて成功しました。また、内包するゲスト分子の電子的性質による2の蛍光スイッチング挙動を見出し、このメカニズムがゲスト分子のHOMO準位に依存していることを明らかにしました。最近では”Ex-box”など高い芳香環認識能をもつ新しいホスト分子は報告されているものの[3]、本研究は、既知のPBIの強いスタッキング能力を活用するだけで、うまく芳香環を”捕らえた”のみでなく、それを蛍光で可視化することにも成功した興味深い例であるといえると思います。

 

参考文献

  1. Würthner, F.; Saha-Möller, R. C.; Fimmel, B.; Ogi, S.; Leowanawat, P.; Schmidt, D. Chem. Rev. 2015, ASAP. DOI: 1021/acs.chemrev.5b00188
  2. Soh, N.; Ueda, T. Talanta. 2011, 85, 1233–1237. DOI: 1016/j.talanta.2011.06.010
  3. Dale, E. J.; Vermeulen, N. A.; Thomas, A. A.; Barnes, J. C.; Juricek, M.; Blackburn, A. K.; Strutt, N. L.; Sarjeant, A. A.; Stern, C. L.; Denmark, S. E.; Stoddart, J. F. J. Am. Chem. Soc. 2014, 136, 10669−10682. DOI: 1021/ja5041557

 

関連書籍

The following two tabs change content below.
bona
愛知で化学を教えています。よろしくお願いします。
bona

最新記事 by bona (全て見る)

関連記事

  1. 多彩な蛍光を発する単一分子有機化合物をつくる
  2. ジェフ・ボーディ Jeffrey W. Bode
  3. コーヒーブレイク
  4. ブラックマネーに御用心
  5. ノーベル化学賞2011候補者一覧まとめ
  6. なぜ青色LEDがノーベル賞なのか?ー基礎的な研究背景編
  7. 無水酢酸は麻薬の原料?
  8. 自由の世界へようこそ

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 北大触媒化研、水素製造コスト2―3割安く
  2. 香月 勗 Tsutomu Katsuki
  3. イリヤ・プリゴジン Ilya Prigogine
  4. ご注文は海外大学院ですか?〜選考編〜
  5. リチャード・シュロック Richard R. Schrock
  6. ご注文は海外大学院ですか?〜準備編〜
  7. ヴィクター・アンブロス Victor Ambros
  8. 食品アクリルアミド低減を 国連専門委「有害の恐れ」
  9. Wiley社の本が10%割引キャンペーン中~Amazon~
  10. 四角い断面を持つナノチューブ合成に成功

関連商品

注目情報

注目情報

最新記事

リチウムイオン電池の課題のはなし-1

Tshozoです。以前リチウムイオン電池に関するトピックを2つほど紹介した(記事:リチウムイ…

アルコールをアルキル化剤に!ヘテロ芳香環のC-Hアルキル化

2015年、プリンストン大学・D. W. C. MacMillanらは、水素移動触媒(HAT)および…

三種類の分子が自発的に整列した構造をもつ超分子共重合ポリマーの開発

第123回のスポットライトリサーチは、テキサス大学オースティン校博士研究員(Jonathan L. …

超分子化学と機能性材料に関する国際シンポジウム2018

「超分子化学と機能性材料に関する国際シンポジウム2018」CEMS International Sy…

アメリカで Ph. D. を取る –研究室に訪問するの巻–

この連載は、米国の大学院で Ph.D. を取得することを目指す学生が日記感覚で近況を記録するためのも…

光触媒ラジカルカスケードが実現する網羅的天然物合成

四川大学のYong Qinらは、可視光レドックス触媒によって促進される窒素ラジカルカスケード反応によ…

Chem-Station Twitter

PAGE TOP