[スポンサーリンク]

化学者のつぶやき

シクロファン+ペリレンビスイミドで芳香環を認識

[スポンサーリンク]

 

シクロファンは芳香環の2ヶ所以上が炭素鎖等によって架橋された化合物群であり、分子認識化学分野で最重要分子の一つです。一方、ペリレンビスイミド(Perylene Bisimide: PBI)は優れた光耐久性、高い蛍光量子収率、そして強い分子間スタッキングを有する分子として知られており、絵の具[1]から蛍光イメージング[2]まで幅広い分野で応用されています。

これまで、ペリレンビスイミドをシクロファンの「芳香環」としたPBIシクロファンの合成・物性研究は数多く行われてきましたが[1,2]、平面性の高い芳香環を高認識で取り込めた例は報告されていませんでした。そこで、PBI研究の第一人者であるWürthnerらは、二つのPBIを適切な距離に固定させることで、芳香環を高認識に取り込ませることが可能な、剛直なPBIシクロファンを合成することに成功しました。また、それが顕著な蛍光スイッチ挙動を示すことを見いだしました(図1)。

“A Perylene Bisimide Cyclophane as a “Turn-On” and “Turn-Off” Fluorescence Probe”

Spenst, P.; Würthner, F.;Angew. Chem. Int. Ed. 2015, 54, 10165. DOI: 10.1002/anie.201503542

2015-10-08_17-17-25

図1. 今回合成したPBIシクロファン

合成および性質

Würthnerらは、剛直なPBIシクロファンとしてパラキシレンで架橋された2を設計し、その合成を行いました(図 2)。PBI-1 とパラキシレンジアミンをイミダゾールとピリジン存在下、トルエン中で20時間加熱還流することにより、目的の2を得ました(収率7%)。

Scheme 1: 剛直なシクロファン2の合成

図2 剛直なシクロファン2の合成

 

合成した2のクロロホルム溶液における蛍光量子収率はΦ=0.21でした。これはモノマーのPBIの蛍光量子収率(Φ=0.97)と比較し非常に低い値でした。一方トルエンを溶媒とした場合、2の蛍光量子収率はΦ=0.64まで向上しました。これは、2にトルエン分子(ゲスト分子)が内包されることで2つのPBI間π−π相互作用が弱くなったことが想定されます。

次に2のホスト分子としての機能を評価するため、2のクロロホルム溶液に様々な芳香族炭化水素を加え、その際の発光変化を観測しました。その結果、電子豊富な芳香環状が2に内包された場合、大幅な発光強度の減少が確認されました(図 3a)。一方、電子不足な芳香環が2に内包されると、生成した2の錯体の発光強度が劇的に向上しています(図3b)。つまり、電子豊富な芳香環により、2の蛍光が”off”になり、電子不足な芳香環により、蛍光が”on”になるという蛍光スイッチ挙動がみられました。

 

Figure 1: (a)アントラセンおよび (b)フェニルナフタレンの発光スペクトル変化

図3: (a)アントラセンおよび (b)フェニルナフタレンの発光スペクトル変化

 

この蛍光スイッチ挙動を示す理由を解明するため、著者らはゲスト分子とホスト分子それぞれのHOMO準位に着目しました。まず、ゲスト分子のHOMO−LUMO準位についてのDFT計算を行いました(図 4a)。さらにゲスト分子を内包した際の錯体の蛍光量子収率をプロットしてます(図 4b)。

Figure 2: (a) DFT計算により見積もられたゲスト分子のHOMO−LUMO準位(B3LYP/6-31G(d))(b) ホスト−ゲスト錯体の蛍光量子収率Φのプロット

図 4: (a) DFT計算により見積もられたゲスト分子のHOMO−LUMO準位(B3LYP/6-31G(d))(b) ホスト−ゲスト錯体の蛍光量子収率Φのプロット

 

Figure2の相関関係より、著者らは、2の光励起された後、ゲスト分子からの電子移動の有無が、この蛍光スイッチ挙動に関与していると考えました。つまり、電子不足のゲスト分子が内包された場合は2の光励起されたHOMOにゲスト分子のHOMOからの電子移動が起こりません。そのため2の発光強度が、ゲスト分子がない場合よりも大きくなります。一方で、電子豊富なゲスト分子を挿入した場合はゲスト分子からの電子移動が起こるため、蛍光が妨げられ2の発光強度が小さくなると結論付けました(図5)。

Figure 3: (中央図)蛍光スイッチ挙動のメカニズム。光を照射した際に電子不足な(a)群のゲスト分子が内包されている場合は上図赤色の挙動を、電子豊富な(b)群のゲスト分子が内包されている際は青色の挙動を示す

図5: (中央図)蛍光スイッチ挙動のメカニズム。光を照射した際に電子不足な(a)群のゲスト分子が内包されている場合は上図赤色の挙動を、電子豊富な(b)群のゲスト分子が内包されている際は青色の挙動を示す

 

まとめ

今回著者らは、様々な芳香環を取り込むことが出来るペリレンビスイミドを主骨格とするシクロファン2の合成に初めて成功しました。また、内包するゲスト分子の電子的性質による2の蛍光スイッチング挙動を見出し、このメカニズムがゲスト分子のHOMO準位に依存していることを明らかにしました。最近では”Ex-box”など高い芳香環認識能をもつ新しいホスト分子は報告されているものの[3]、本研究は、既知のPBIの強いスタッキング能力を活用するだけで、うまく芳香環を”捕らえた”のみでなく、それを蛍光で可視化することにも成功した興味深い例であるといえると思います。

 

参考文献

  1. Würthner, F.; Saha-Möller, R. C.; Fimmel, B.; Ogi, S.; Leowanawat, P.; Schmidt, D. Chem. Rev. 2015, ASAP. DOI: 1021/acs.chemrev.5b00188
  2. Soh, N.; Ueda, T. Talanta. 2011, 85, 1233–1237. DOI: 1016/j.talanta.2011.06.010
  3. Dale, E. J.; Vermeulen, N. A.; Thomas, A. A.; Barnes, J. C.; Juricek, M.; Blackburn, A. K.; Strutt, N. L.; Sarjeant, A. A.; Stern, C. L.; Denmark, S. E.; Stoddart, J. F. J. Am. Chem. Soc. 2014, 136, 10669−10682. DOI: 1021/ja5041557

 

関連書籍

The following two tabs change content below.
bona
愛知で化学を教えています。よろしくお願いします。
bona

最新記事 by bona (全て見る)

関連記事

  1. ノーベル賞化学者と語り合おう!「リンダウ・ノーベル賞受賞者会議」…
  2. 付設展示会へ行こう!ーWiley編
  3. 化学研究ライフハック:ソーシャルブックマークを活用しよう!
  4. 化学研究ライフハック :RSSリーダーで新着情報をチェック!20…
  5. 【太陽HD】”世界一の技術”アルカリ現像…
  6. ハラスメントから自分を守るために。他人を守るために【アメリカで …
  7. デスソース
  8. 化学研究ライフハック:Twitter活用のためのテクニック

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 実現思いワクワク 夢語る日本の化学者
  2. 【速報】2013年イグノーベル化学賞!「涙のでないタマネギ開発」
  3. 100円で買えるカーボンナノチューブ
  4. OPRD誌を日本プロセス化学会がジャック?
  5. ジ-π-メタン転位 Di-π-methane Rearrangement
  6. 海外でのアカデミックポジションの公開インタビュー
  7. リアルタイムFT-IRによる 樹脂の硬化度評価・硬化挙動の分析【終了】
  8. 100年以上未解明だった「芳香族ラジカルカチオン」の構造を解明!
  9. 未来の病気診断はケータイで!?
  10. 糖鎖合成化学は芸術か?

関連商品

注目情報

注目情報

最新記事

光/熱で酸化特性のオン/オフ制御が可能な分子スイッチの創出に成功

第244回のスポットライトリサーチは、北海道大学大学院総合化学院・林 裕貴さんにお願いしました。…

続・企業の研究を通して感じたこと

自分は、2014年に「企業の研究を通して感じたこと」という記事を執筆しましたが、それから5年が経ち、…

第49回―「超分子の電気化学的挙動を研究する」Angel Kaifer教授

第49回の海外化学者インタビューは、エンジェル・カイファー教授です。マイアミ大学化学科で超分子系電気…

日本化学会 第100春季年会 市民公開講座 夢をかなえる科学

■ 概要企画名:    市民公開講座 夢をかなえる科学主催:        公益社団法人…

第48回―「周期表の歴史と哲学」Eric Scerri博士

第48回の海外化学者インタビューは、エリック・セリー博士です。英国で教育を受け、カリフォルニア大学ロ…

ペプチド縮合を加速する生体模倣型有機触媒

2019年、ニューヨーク大学のParamjit S. Aroraらは、活性アシル中間体への求核付加遷…

Chem-Station Twitter

PAGE TOP