[スポンサーリンク]

chemglossary

重医薬品(重水素化医薬品、heavy drug)

[スポンサーリンク]

 

重医薬品(重水素化医薬品, heavy drug)とは重水素(2H, D)で標識された医薬品のことを指す[1]。医薬分子で代謝を受ける部位の C−H 結合を、より安定な C−D 結合に置換することで代謝を遅らせることができる。薬が安定して効く時間が延びるため、薬をのむ回数を減らし、副作用も抑えることができる。そのため、患者に負担をかけない、安全な治療法を提供できる。

薬の成分は体内でさまざまな効果を発揮するが、肝臓などで徐々に分解されて効果が薄まってゆく。効果を維持するために薬をたくさん飲めば、コストもかかる上に副作用のリスクも高くなる。しかも肝臓などでの分解には個人差があるので、副作用をコントロールするために患者一人一人に合わせて投与量を調節する必要がある場合がある。この問題を解決する一つの戦略が医薬品の重水素化である。

重水素化された有機物質に含まれる炭素–重水素結合 (C–D 結合) は、通常の水素化合物に含まれる C–H 結合より化学結合が強い。そのため、代謝部位に C–D 結合を導入すれば、薬が体内で分解される際に通常よりも時間がかかる。つまり、通常の医薬品と同じ効果が、通常よりも安定して長く続く。そのため医者や患者にとって薬を飲む量や回数を減らし、副作用をコントロールしやすくなるというメリットがある(図1)。重水素化は単純に代謝を遅くするだけではなく、代謝経路を変更するための戦略として利用されることもある。

図1。従来の医薬品と重水素化医薬品のイメージ。薬は主に肝臓で分解されて効果が薄まっていくが、重水素化医薬品は分解に時間がかかるため、同量でも薬効が長時間持続する。(出典:ほとんど0円大学

 

2017年に重水素化した医薬品 deutetrabenazine (ハンチントン舞踏病における不随意運動の抑制)が、アメリカFDA(Food and Drug Administration)に初めて認可された(図2)[2]。この薬は tetrabenazine に含まれる二つのメチル基を重水素化したものである。

図2

deutetrabenazine はまずカルボニル基がアルコールへと代謝される (図3左)。このアルコールは活性代謝物である。さらにシトクローム P450 (CYP 2D6) によってメトキシ基が脱メチル化される(図3右)。脱メチル化体はいずれも不活性であるため、この脱メチル化によって薬効が失われてしまう。

図3

 

P450 による脱メチル化は水素引き抜きによって進行する。メチル基の重水素化は、この脱メチル化を速度論的重水素同位体効果(KDIE)によって遅くすることで、薬効の持続に寄与する。例えば肝ミクロソーム (P450) によるアニソール(メトキシベンゼン)の脱メチル化反応 (図4)では、上式と比べて下式の重水素化アニソールの脱メチル化が 5–8 倍遅いと報告されている[3]

図4

2021年には中国で重医薬品 donafenib が認可された (抗がん剤、キナーゼ阻害剤, 図5)[4]。この薬は sorafenib に含まれるメチル基を重水素化したものである。2022年現在、各国で臨床試験に入っている重医薬品が複数存在する。

図5

 

参考文献

  1. Pirali, T.; Serafini, M.; Cargnin, S.; Genazzani, A. A. Applications of Deuterium in Medicinal Chemistry. J. Med. Chem. 201962, 5276−5297. DOI:10.1021/acs.jmedchem.8b01808

  2. Dean, M.; Sung, V. W. Review of Deutetrabenazine: a Novel Treatment for Chorea Associated with Huntington’s Disease. Drug Des. Devel. Ther. 2018, 12, 313−319. DOI:10.2147/DDDT.S138828

  3. Smith, J. R. L.; Sleath, P. R. Model systems for cytochrome P450 dependent mono-oxygenases. Part 2. Kinetic isotope effects for the oxidative demethylation of anisole and [Me-2H3]anisole by cytochrome P450 dependent mono-oxygenases and model systems. JCS Perkin Trans. II 1983, 621–628. DOI: 10.1039/P29830000621

  4. Qin, S. et al. Donafenib Versus Sorafenib in First-Line Treatment of Unresectable or Metastatic Hepatocellular Carcinoma: A Randomized, Open-Label, Parallel-Controlled Phase II-III Trial. J. Clin. Oncol. 2021, 39, 3002−3011. DOI: 10.1200/JCO.21.00163

関連リンク

Avatar photo

Naka Research Group

投稿者の記事一覧

研究グループで話題となった内容を紹介します

関連記事

  1. 最近の有機化学論文2
  2. 階段状分子の作り方
  3. イミノアルキンと共役ジエンの形式的[4+1]アニュレーションによ…
  4. OMCOS19に参加しよう!
  5. ケムステが化学コミュニケーション賞2012を受賞しました
  6. 接着系材料におけるmiHub活用事例とCSサポートのご紹介
  7. なぜ傷ついたマジックマッシュルームは青くなるの?
  8. グルコース (glucose)

注目情報

ピックアップ記事

  1. 化学の成果で脚光を浴びた小・中・高校生たち
  2. 触媒がいざなう加速世界へのバックドア
  3. ハリーポッターが参考文献に登場する化学論文
  4. アルツハイマー原因物質、緑茶成分に抑制機能・埼玉医大など
  5. 金属材料・セラミックス材料領域におけるマテリアルズ・インフォマティクスの活用
  6. 化学企業のグローバル・トップ50が発表
  7. 究極の二量体合成を追い求めて~抗生物質BE-43472Bの全合成
  8. ロバート・ランガー Robert S. Langer
  9. 藤原・守谷反応 Fujiwara-Moritani Reaction
  10. 化学小説まとめ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年3月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP