[スポンサーリンク]

一般的な話題

細胞の中を旅する小分子|第二回

[スポンサーリンク]

さて、前回の続きです。今回から実際に薬が目的細胞周辺に到着し、標的タンパク質が核内にある場合の薬の動きを大きさの観点から追ってみたいと思います。

第2回では、細胞膜を通過し、細胞質の世界までの旅を薬になったつもりでお楽しみください。

 

細胞膜をすりぬける

多くの場合薬の大きさは小分子なら水中で10−30 Å(10-9 m)の範囲の長さのconformationをとっていると思います。ベンゼン環が約4 Åなので、ビフェニル(biphenyl)の両方のパラ位に炭素間の距離が10 Å弱となります。ヒト細胞の大きさは通常6−26 μm(10-5 m)程度がほとんどです。

 

Fig1

Fig.1 動物細胞の大きさ(Mol. Biol. Cell Fig.1-30 一部改)

 

さて目的地周辺についた薬は細胞内に入る必要があります。膜の構造をみてみるとその厚みは約5 nmと細胞の大きさに対して非常に薄い膜であることがわかります(F ig.2)。膜は大変薄いですが、この膜が生命にとって最も重要な器官の1つと考えられないでしょうか。膜がないと外界との境界がなくなり、外界と内側の物質濃度の調整ができず、全ての化合物は拡散し、生命の営みを何一つすることができないからです。

 

Fig2

Fig.2 細胞膜 (Mol.Biol.Cell Fig.10-1, Fig.10-5一部改)左図:脂質2重膜の一層のみを模式的表示;オレンジ色の化合物:コレステロール

 

この膜をコレステロールと同程度の大きさ(1−3nm)の薬が通り抜けます。膜を多くの薬が通り抜ける理由は、膜内部が脂溶性でありかつ薬の多くは脂溶性が高いため、受動拡散で膜を通り抜けることができるためです。一部の薬はトランスポーターを利用した能動輸送で通過するものもあります。実際には、薬など異物を排出するトランスポーター有している細胞も多くあるので、きちんと膜透過性をもった化合物を合成するのが薬創りの最初の重要なstepとなります。

 

細胞内の世界ー細胞質

細胞膜を透過すると、そこは細胞内の世界です。各オルガネラは、各々膜に覆われています。それ以外の多くの部分は細胞質です。Fig.3を見て下さい。色のついた物質は全てRNAとタンパク質で実際の濃度に基づいて描かれています(1,2)。Macromoleculesの濃度は、細胞質では138 mMと非常に高い値です。血液が9 mMであることと比較していただければわかりやすいと思います。いわば、ドロドロのスープです。そのため、小分子の拡散速度は細胞内に入ると1/4に小さくなります。

 

Fig3

Fig.3 Cytosol: protein soup (Mol.Biol.Cell Fig.2-49一部改)

 

では、次に実際のタンパク質のいくつかをFig.4に示します(核内のDNAとの複合体や細胞外の構造タンパクも含まれています)。

5nmを黄色ので示しました。タンパク質の平均の残基数は422程度と言われています。酵素や蛋白蛋白相互作用阻害剤など、多くの創薬の標的はcytosol中に存在する蛋白質です。阻害剤の存在する酵素の例として、タンパク質のTyrやThr残基などの水酸基へのATP等を用いたリン酸化酵素(kinase)や生体内小分子やペプチドを反応基質に用いる酵素や補酵素を反応に使う酵素などがあげられます。ではなぜ酵素タンパク質と小分子は大きさが異なるのに阻害剤として機能するのでしょうか?それは、酵素のポケットが、大きく深いため、阻害剤が基質認識部位周辺に結合し生体内の本来の基質と結合できなくなるためです(基質認識部位を競合しなくても小分子が結合しタンパク質を変性させ本来の基質が結合しなければよい)。

一方、蛋白蛋白相互作用(Protein-Protein Interactions; PPI)の阻害剤は、タンパク質とタンパク質の広いインターフェースを阻害する必要があるため、偶然見つかったFK506、cyclosporinやtaxol, vincristineなどの自然の恵み以外戦略的に阻害剤を作る事は不可能と言われていた時代が長く続きました。今ではFBDD(Fragment based drug design)という手法を用いSAR展開した化合物が複数個臨床試験に入っています。狙ってPPIを阻害できる薬を創出することが可能な時代になりつつあることを多くの創薬関係者が実感しています。PPIに関して書くには相当の紙面が必要です。いつか機会のある時に解説したいと思います。

 

Fig4

Fig.4 タンパク質の例

 

 

蛋白をもう少し細部までみて見ましょう。

蛋白はご承知の通り、2次構造の組み合わせで3次構造をつくり、サブユニットが集まり4次構造をつくります(複数のポリペプチド鎖が、非共有結合でまとまった複合体、多蛋白複合体含む;ヘモグロビン、DNAポリメラーゼ、ヌクレオソーム、微小管)。この2次構造まで落ちてくるとようやく、小分子で認識が可能な大きさになることがわかると思います。代表的なα-Helixとβ-sheet構造を図に示します(Fig.5)。つまり、化合物をこの図に置いた時に、その相互作用等が細かくイメージできるようになります。

 

Fig5

Fig.5 secondary structure (Mol. Biol. Cell Fig.3-1, 3-7 一部改)

 

 

本日はここまで。

次回は最終回です。(長々すみません)次は核内の世界まで入って、最後にまとめを述べて閉めたいと思ってます。

 

参考文献

1. Molecular biology of the Cell (5th edition, Garland Science)

2. D.S.Goodsell, Trends in Biochem. Sci. 1991, 16, 203-206.

 

関連書籍

MasaN.

MasaN.

投稿者の記事一覧

博士(工)。できる範囲で。

関連記事

  1. C&EN コラム記事 ~Bench & Cu…
  2. ノーベル賞の合理的予測はなぜ難しくなったのか?
  3. 誤解してない? 電子の軌道は”軌道”では…
  4. ガラス器具の洗浄にも働き方改革を!
  5. 論文の自己剽窃は推奨されるべき?
  6. 二窒素の配位モードと反応性の関係を調べる: Nature Rev…
  7. 分子の聖杯カリックスアレーンが生命へとつながる
  8. テストには書けない? カルボキシル化反応の話

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 田辺シリル剤
  2. 多孔性材料の動的核偏極化【生体分子の高感度MRI観測への一歩】
  3. 化学者のためのエレクトロニクス入門① ~電子回路の歴史編~
  4. ペロブスカイト太陽電池が直面する現実
  5. 硫黄 Sulfurーニンニク、タマネギから加硫剤まで
  6. 染色なしで細胞を観察 阪大ベンチャーが新顕微鏡開発
  7. 化学は地球を救う!
  8. ディールス・アルダー反応 Diels-Alder Reaction
  9. アザジラクチンの全合成
  10. 光化学フロンティア:未来材料を生む有機光化学の基礎

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

クラリベイト・アナリティクスが「引用栄誉賞2020」を発表!

9月23日に、クラリベイト・アナリティクス社から、2020年の引用栄誉賞が発表されました。こ…

アズワンが第一回ケムステVプレミアレクチャーに協賛しました

さて先日お知らせいたしましたが、ケムステVプレミアクチャーという新しい動画配信コンテンツをはじめます…

化学者のためのエレクトロニクス講座~代表的な半導体素子編

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLE…

第121回―「亜鉛勾配を検出する蛍光分子の開発」Lei Zhu教授

第121回の海外化学者インタビューは、Lei Zhu教授です。フロリダ州立大学 化学・生化学科で、亜…

高知市で「化学界の権威」を紹介する展示が開催中

明治から昭和にかけて“化学界の権威”として活躍した高知出身の化学者=近重真澄を紹介する展示が高知市で…

ケムステバーチャルプレミアレクチャーの放送開始決定!

主に最先端化学に関する講演者をテーマ別で招待しオンライン講演を行っていただくケムステバーチャルシンポ…

分子運動を世界最高速ムービーで捉える!

第275回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 博士課程・清水俊樹 さんに…

「未来博士3分間コンペティション2020」の挑戦者を募集

科学技術人材育成のコンソーシアムの構築事業(次世代研究者育成プログラム)「未来を拓く地方協奏プラ…

Chem-Station Twitter

PAGE TOP