[スポンサーリンク]

一般的な話題

細胞の中を旅する小分子|第二回

[スポンサーリンク]

さて、前回の続きです。今回から実際に薬が目的細胞周辺に到着し、標的タンパク質が核内にある場合の薬の動きを大きさの観点から追ってみたいと思います。

第2回では、細胞膜を通過し、細胞質の世界までの旅を薬になったつもりでお楽しみください。

 

細胞膜をすりぬける

多くの場合薬の大きさは小分子なら水中で10−30 Å(10-9 m)の範囲の長さのconformationをとっていると思います。ベンゼン環が約4 Åなので、ビフェニル(biphenyl)の両方のパラ位に炭素間の距離が10 Å弱となります。ヒト細胞の大きさは通常6−26 μm(10-5 m)程度がほとんどです。

 

Fig1

Fig.1 動物細胞の大きさ(Mol. Biol. Cell Fig.1-30 一部改)

 

さて目的地周辺についた薬は細胞内に入る必要があります。膜の構造をみてみるとその厚みは約5 nmと細胞の大きさに対して非常に薄い膜であることがわかります(F ig.2)。膜は大変薄いですが、この膜が生命にとって最も重要な器官の1つと考えられないでしょうか。膜がないと外界との境界がなくなり、外界と内側の物質濃度の調整ができず、全ての化合物は拡散し、生命の営みを何一つすることができないからです。

 

Fig2

Fig.2 細胞膜 (Mol.Biol.Cell Fig.10-1, Fig.10-5一部改)左図:脂質2重膜の一層のみを模式的表示;オレンジ色の化合物:コレステロール

 

この膜をコレステロールと同程度の大きさ(1−3nm)の薬が通り抜けます。膜を多くの薬が通り抜ける理由は、膜内部が脂溶性でありかつ薬の多くは脂溶性が高いため、受動拡散で膜を通り抜けることができるためです。一部の薬はトランスポーターを利用した能動輸送で通過するものもあります。実際には、薬など異物を排出するトランスポーター有している細胞も多くあるので、きちんと膜透過性をもった化合物を合成するのが薬創りの最初の重要なstepとなります。

 

細胞内の世界ー細胞質

細胞膜を透過すると、そこは細胞内の世界です。各オルガネラは、各々膜に覆われています。それ以外の多くの部分は細胞質です。Fig.3を見て下さい。色のついた物質は全てRNAとタンパク質で実際の濃度に基づいて描かれています(1,2)。Macromoleculesの濃度は、細胞質では138 mMと非常に高い値です。血液が9 mMであることと比較していただければわかりやすいと思います。いわば、ドロドロのスープです。そのため、小分子の拡散速度は細胞内に入ると1/4に小さくなります。

 

Fig3

Fig.3 Cytosol: protein soup (Mol.Biol.Cell Fig.2-49一部改)

 

では、次に実際のタンパク質のいくつかをFig.4に示します(核内のDNAとの複合体や細胞外の構造タンパクも含まれています)。

5nmを黄色ので示しました。タンパク質の平均の残基数は422程度と言われています。酵素や蛋白蛋白相互作用阻害剤など、多くの創薬の標的はcytosol中に存在する蛋白質です。阻害剤の存在する酵素の例として、タンパク質のTyrやThr残基などの水酸基へのATP等を用いたリン酸化酵素(kinase)や生体内小分子やペプチドを反応基質に用いる酵素や補酵素を反応に使う酵素などがあげられます。ではなぜ酵素タンパク質と小分子は大きさが異なるのに阻害剤として機能するのでしょうか?それは、酵素のポケットが、大きく深いため、阻害剤が基質認識部位周辺に結合し生体内の本来の基質と結合できなくなるためです(基質認識部位を競合しなくても小分子が結合しタンパク質を変性させ本来の基質が結合しなければよい)。

一方、蛋白蛋白相互作用(Protein-Protein Interactions; PPI)の阻害剤は、タンパク質とタンパク質の広いインターフェースを阻害する必要があるため、偶然見つかったFK506、cyclosporinやtaxol, vincristineなどの自然の恵み以外戦略的に阻害剤を作る事は不可能と言われていた時代が長く続きました。今ではFBDD(Fragment based drug design)という手法を用いSAR展開した化合物が複数個臨床試験に入っています。狙ってPPIを阻害できる薬を創出することが可能な時代になりつつあることを多くの創薬関係者が実感しています。PPIに関して書くには相当の紙面が必要です。いつか機会のある時に解説したいと思います。

 

Fig4

Fig.4 タンパク質の例

 

 

蛋白をもう少し細部までみて見ましょう。

蛋白はご承知の通り、2次構造の組み合わせで3次構造をつくり、サブユニットが集まり4次構造をつくります(複数のポリペプチド鎖が、非共有結合でまとまった複合体、多蛋白複合体含む;ヘモグロビン、DNAポリメラーゼ、ヌクレオソーム、微小管)。この2次構造まで落ちてくるとようやく、小分子で認識が可能な大きさになることがわかると思います。代表的なα-Helixとβ-sheet構造を図に示します(Fig.5)。つまり、化合物をこの図に置いた時に、その相互作用等が細かくイメージできるようになります。

 

Fig5

Fig.5 secondary structure (Mol. Biol. Cell Fig.3-1, 3-7 一部改)

 

 

本日はここまで。

次回は最終回です。(長々すみません)次は核内の世界まで入って、最後にまとめを述べて閉めたいと思ってます。

 

参考文献

1. Molecular biology of the Cell (5th edition, Garland Science)

2. D.S.Goodsell, Trends in Biochem. Sci. 1991, 16, 203-206.

 

関連書籍

[amazonjs asin=”0815344325″ locale=”JP” tmpl=”Small” title=”Molecular Biology of the Cell”] [amazonjs asin=”0123741947″ locale=”JP” tmpl=”Small” title=”The Practice of Medicinal Chemistry, Third Edition”]
Avatar photo

MasaN.

投稿者の記事一覧

博士(工)。できる範囲で。

関連記事

  1. 拡張Pummerer反応による簡便な直接ビアリール合成法
  2. 2つの結合回転を熱と光によって操る、ベンズアミド構造の新たな性質…
  3. 生体深部イメージングに有効な近赤外発光分子の開発
  4. ナイトレンの求電子性を利用して中員環ラクタムを合成する
  5. π-アリルイリジウムに新たな光を
  6. 【東日本大震災より10年】有機合成系研究室における地震対策
  7. アメリカ化学留学 ”実践編 ー英会話の勉強ーR…
  8. アルコールをアルキル化剤に!ヘテロ芳香環のC-Hアルキル化

注目情報

ピックアップ記事

  1. 【速報】2023年ノーベル化学賞は「量子ドットの発見と合成」へ!
  2. 厚労省が実施した抗体検査の性能評価に相次ぐ指摘
  3. 【本日14時締切】マテリアルズ・インフォマティクスで活用される計算化学-その手法と概要について広く解説-
  4. DNAに人工塩基対を組み入れる
  5. ポンコツ博士の海外奮闘録 〜留学サバイバルTips〜
  6. 第五回ケムステVシンポジウム「最先端ケムバイオ」開催報告
  7. 「研究を諦めたくない」―50代研究者が選んだセカンドステージ
  8. 有機反応の仕組みと考え方
  9. スルホニル保護基 Sulfonyl Protective Group
  10. 半導体・リチウムイオン電池にも!マイクロ波がもたらすプロセス改善

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2014年11月
 12
3456789
10111213141516
17181920212223
24252627282930

注目情報

最新記事

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP