[スポンサーリンク]

化学者のつぶやき

可視光レドックス触媒を用いた芳香環へのC-Hアミノ化反応

2015年、ノースカロライナ大学チャペルヒル校・David Nicewiczらは、可視光レドックス触媒を用いた芳香環への位置選択的C-Hアミノ化反応を開発した。アレーンカチオンラジカルを活性種とした機構で進行するため、アミン側の適用が広いことが特徴である。

”Site-selective arene C-H amination via photoredox catalysis”
Romero, N. A.; Margrey, K. A.; Tay, N. E.; Nicewicz, D. A.* Science 2015, 349, 1326-1330. DOI: 10.1126/science.aac9895

問題設定と解決した点

 従来法の芳香族アミノ化は、炭素-水素(C-H)結合を炭素-ハロゲン結合や炭素-ホウ素結合へ一旦変換し、クロスカップリング形式で合成することが主流であった。この手法では多段階を要するとともに、ハロゲンやホウ素由来の廃棄物が不可避となる。窒素酸化剤をアミン源とするsp2C-Hアミノ化の例は数例知られている[1]が、導入できるアミンが限られることから多様性が得にくい。

 本報告では、可視光レドックス触媒条件で行うことで、位置選択的かつ1工程にて、芳香環C-H結合をアミノ化できる反応が実現されている。

技術や手法のキモ

 福住触媒(Mes-Acr+)を用いた光誘起電子移動(PET)過程により、芳香環からアレーンカチオンラジカルを生じさせることが鍵となっている。この事実は福住らによって見いだされており、また同研究で酸素を最終酸化剤として使えるだろうことも示唆されている[2]。

 電気化学的な酸化によるアレーンカチオンラジカルを経由してC-Hアミノ化が行えることは、吉田らによって報告されている[3]。しかしながらこの場合は、アミンの保護―脱保護が必要となっていた。

主張の有効性検証

①反応条件の最適化

アニソールおよびピラゾールを基質として反応条件の検討を行った。アクリジニウム触媒A, Bを用い、酸化剤、濃度、溶媒を検討したが、中程度の収率から向上しなかった。原因として以下が考えられた。

  1. 原料の酸化ポテンシャル(Ep/2 = +1.87V vs SCE)に対して目的物のポテンシャル(Ep/2 = +1.50V vs SCE)が低いため、励起された触媒が目的物を酸化してしまい、原料の1電子酸化が進まない。
  2. メチルエーテルの酸化によって生じるギ酸フェニルが主な副生成物として生じる。この副反応の抑制が課題。
  3. 触媒やアニソールの分解が確認される。系中生成するヒドロキシラジカルに対しておそらくは不安定。

この解決策として下記を適用したところ、収率の大幅な向上が見られた。

  1. TEMPOの添加:系内の強ラジカルを緩和することで、マスバランスの改善が見られた。添加量も重要で、多すぎると収率が低下する。
  2. 触媒Cを用いる:アクリジニウム触媒の3,6位に立体障害(t-Bu)を導入することで、分解反応に対して安定化される。

②基質一般性の検討

冒頭図記載のものを最適条件とし、基質一般性の検討を行った。

パラ選択的に反応が進行。メトキシ基以外にも電子供与基であれば反応は進行する。ただし、電子供与能が低いアレーンの場合、今回の触媒では1電子酸化できなくなる。選択性に関しては、LUMOや部分電荷の計算でほぼ推測できる。電気化学系はベンジル位も反応してしまうが、今回の系では制御可能。

また、アンモニア等価体としてアンモニウムカーバメートを使うことで、NH2導入も選択的に進行する。

次に読むべき論文は?

  • 同機構で達成された芳香族C-Hシアノ化反応[4]

参考文献

  1. (a) Boursalian, G. B.; Ngai, M.-Y.; Hojczyk, K. N.; Ritter, T. J. Am. Chem. Soc. 2013, 135, 13278. DOI: 10.1021/ja4064926 (b) Foo, K.; Selia, E.; Tohme, I.; Eastogate, M. D.; Baran, P. S. J. Am. Chem. Soc. 2014, 136, 5279. DOI: 10.1021/ja501879c (c) Kawakami, T.; Murakami, K.; Itami, K. J. Am. Chem. Soc. 2015, 137, 2460. DOI: 10.1021/ja5130012 (d) Ito, E.; Fukushima, T.; Kawakmi, T.; Murakami, K.; Itami, K. Chem. 2017, 2, 383. DOI: 10.1016/j.chempr.2017.02.006
  2. Ohkubo, K.; Mizushima, K.; Iwata, R.; Fukuzumi, S. Chem. Sci. 2011, 2, 715. DOI: 10.1039/C0SC00535E
  3. Morofuji, T.; Shimizu, A.; Yoshida, J.-i. J. Am. Chem. Soc. 2014, 136, 4496. DOI: 10.1021/ja501093m
  4. McManus, J. B.; Nicewicz, D. A. J. Am. Chem. Soc. 2017, 139, 2880. DOI: 10.1021/jacs.6b12708

 

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 書物から学ぶ有機化学 3
  2. 摩訶不思議なルイス酸・トリス(ペンタフルオロフェニル)ボラン
  3. 核酸医薬の物語2「アンチセンス核酸とRNA干渉薬」
  4. ChemDrawの使い方【作図編⑤ : 反応機構 (後編)】
  5. 【書籍】アリエナイ化学実験の世界へ―『Mad Science―炎…
  6. NMR化学シフト予測機能も!化学徒の便利モバイルアプリ
  7. 掃除してますか?FTIR-DRIFTチャンバー
  8. ケイ素置換gem-二クロムメタン錯体の反応性と触媒作用

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 信越化学1四半期決算…自動車や電気向け好調で増収増益
  2. お”カネ”持ちな会社たち-1
  3. モリブデン触媒
  4. 有機化学美術館が来てくれました
  5. L・スターンバック氏死去 精神安定剤開発者
  6. コールドスプレーイオン化質量分析法 Cold Spray Ionization Mass Spectrometry (CSI-MS)
  7. つり革に つかまりアセる ワキ汗の夏
  8. 求核剤担持型脱離基 Nucleophile-Assisting Leaving Groups (NALGs)
  9. 文具に凝るといふことを化学者もしてみむとてするなり ⑦:「はん蔵」でラクラク捺印の巻
  10. 実験室の笑える?笑えない!事故実例集

関連商品

注目情報

注目情報

最新記事

持続可能性社会を拓くバイオミメティクス

内容生物に学ぶ考え方は,ナイロンに見られるように古くからあった.近年,ナノテクノロジーの飛躍…

鉄カルベン活性種を用いるsp3 C-Hアルキル化

2017年、イリノイ大学 M. Christina Whiteらは鉄フタロシアニン触媒から生成するメ…

「生合成に基づいた網羅的な天然物全合成」—カリフォルニア大学バークレー校・Sarpong研より

「ケムステ海外研究記」の第19回目は、向井健さんにお願いしました。向井さんはカリフォルニア大…

研究者向けプロフィールサービス徹底比較!

研究者にとって、業績を適切に管理しアピールすることは重要です。以前にも少し触れましたが、科研費の審査…

天然有機化合物の全合成:独創的なものづくりの反応と戦略

概要生物活性天然有機化合物(天然物)は生命の40億年にわたる進化によって選択された高機能分子…

細菌を取り巻く生体ポリマーの意外な化学修飾

地球上に最もたくさんある有機化合物は何でしょう?それは、野菜や果物、紙、Tシャツ、木材、etc…身の…

Chem-Station Twitter

PAGE TOP