[スポンサーリンク]

化学者のつぶやき

可視光レドックス触媒を用いた芳香環へのC-Hアミノ化反応

2015年、ノースカロライナ大学チャペルヒル校・David Nicewiczらは、可視光レドックス触媒を用いた芳香環への位置選択的C-Hアミノ化反応を開発した。アレーンカチオンラジカルを活性種とした機構で進行するため、アミン側の適用が広いことが特徴である。

”Site-selective arene C-H amination via photoredox catalysis”
Romero, N. A.; Margrey, K. A.; Tay, N. E.; Nicewicz, D. A.* Science 2015, 349, 1326-1330. DOI: 10.1126/science.aac9895

問題設定と解決した点

 従来法の芳香族アミノ化は、炭素-水素(C-H)結合を炭素-ハロゲン結合や炭素-ホウ素結合へ一旦変換し、クロスカップリング形式で合成することが主流であった。この手法では多段階を要するとともに、ハロゲンやホウ素由来の廃棄物が不可避となる。窒素酸化剤をアミン源とするsp2C-Hアミノ化の例は数例知られている[1]が、導入できるアミンが限られることから多様性が得にくい。

 本報告では、可視光レドックス触媒条件で行うことで、位置選択的かつ1工程にて、芳香環C-H結合をアミノ化できる反応が実現されている。

技術や手法のキモ

 福住触媒(Mes-Acr+)を用いた光誘起電子移動(PET)過程により、芳香環からアレーンカチオンラジカルを生じさせることが鍵となっている。この事実は福住らによって見いだされており、また同研究で酸素を最終酸化剤として使えるだろうことも示唆されている[2]。

 電気化学的な酸化によるアレーンカチオンラジカルを経由してC-Hアミノ化が行えることは、吉田らによって報告されている[3]。しかしながらこの場合は、アミンの保護―脱保護が必要となっていた。

主張の有効性検証

①反応条件の最適化

アニソールおよびピラゾールを基質として反応条件の検討を行った。アクリジニウム触媒A, Bを用い、酸化剤、濃度、溶媒を検討したが、中程度の収率から向上しなかった。原因として以下が考えられた。

  1. 原料の酸化ポテンシャル(Ep/2 = +1.87V vs SCE)に対して目的物のポテンシャル(Ep/2 = +1.50V vs SCE)が低いため、励起された触媒が目的物を酸化してしまい、原料の1電子酸化が進まない。
  2. メチルエーテルの酸化によって生じるギ酸フェニルが主な副生成物として生じる。この副反応の抑制が課題。
  3. 触媒やアニソールの分解が確認される。系中生成するヒドロキシラジカルに対しておそらくは不安定。

この解決策として下記を適用したところ、収率の大幅な向上が見られた。

  1. TEMPOの添加:系内の強ラジカルを緩和することで、マスバランスの改善が見られた。添加量も重要で、多すぎると収率が低下する。
  2. 触媒Cを用いる:アクリジニウム触媒の3,6位に立体障害(t-Bu)を導入することで、分解反応に対して安定化される。

②基質一般性の検討

冒頭図記載のものを最適条件とし、基質一般性の検討を行った。

パラ選択的に反応が進行。メトキシ基以外にも電子供与基であれば反応は進行する。ただし、電子供与能が低いアレーンの場合、今回の触媒では1電子酸化できなくなる。選択性に関しては、LUMOや部分電荷の計算でほぼ推測できる。電気化学系はベンジル位も反応してしまうが、今回の系では制御可能。

また、アンモニア等価体としてアンモニウムカーバメートを使うことで、NH2導入も選択的に進行する。

次に読むべき論文は?

  • 同機構で達成された芳香族C-Hシアノ化反応[4]

参考文献

  1. (a) Boursalian, G. B.; Ngai, M.-Y.; Hojczyk, K. N.; Ritter, T. J. Am. Chem. Soc. 2013, 135, 13278. DOI: 10.1021/ja4064926 (b) Foo, K.; Selia, E.; Tohme, I.; Eastogate, M. D.; Baran, P. S. J. Am. Chem. Soc. 2014, 136, 5279. DOI: 10.1021/ja501879c (c) Kawakami, T.; Murakami, K.; Itami, K. J. Am. Chem. Soc. 2015, 137, 2460. DOI: 10.1021/ja5130012 (d) Ito, E.; Fukushima, T.; Kawakmi, T.; Murakami, K.; Itami, K. Chem. 2017, 2, 383. DOI: 10.1016/j.chempr.2017.02.006
  2. Ohkubo, K.; Mizushima, K.; Iwata, R.; Fukuzumi, S. Chem. Sci. 2011, 2, 715. DOI: 10.1039/C0SC00535E
  3. Morofuji, T.; Shimizu, A.; Yoshida, J.-i. J. Am. Chem. Soc. 2014, 136, 4496. DOI: 10.1021/ja501093m
  4. McManus, J. B.; Nicewicz, D. A. J. Am. Chem. Soc. 2017, 139, 2880. DOI: 10.1021/jacs.6b12708

 

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. とある化学者の海外研究生活:アメリカ就職編
  2. キッチン・ケミストリー
  3. 生理活性物質? 生物活性物質?
  4. コーヒーブレイク
  5. ネイチャー論文で絶対立体配置の”誤審”
  6. ホウ素と窒素固定のおはなし
  7. メーカーで反応性が違う?パラジウムカーボンの反応活性
  8. 銅触媒によるアニリン類からの直接的芳香族アゾ化合物生成反応

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. オルトチタン酸テトライソプロピル:Tetraisopropyl Orthotitanate
  2. エレクトロクロミズム Electrochromism
  3. テオ・グレイ Theodore Gray
  4. メタルフリー C-H活性化~触媒的ホウ素化
  5. “マイクロプラスチック”が海をただよう その1
  6. クネーフェナーゲル縮合 Knoevenagel Condensation
  7. 化学物質だけでiPS細胞を作る!マウスでなんと遺伝子導入なしに成功
  8. 新元素、2度目の合成成功―理研が命名権獲得
  9. 「同時多発研究」再び!ラジカル反応を用いたタンパク質の翻訳後修飾
  10. トリフルオロメタンスルホン酸トリエチルシリル : Triethylsilyl Trifluoromethanesulfonate

関連商品

注目情報

注目情報

最新記事

アルケニルアミドに2つアリールを入れる

ニッケル触媒を用いたアルケニルアミドの1,2-ジアリール化反応が開発された。フマル酸エステルを配位子…

蛍光標識で定性的・定量的な解析を可能に:Dansyl-GSH

反応性代謝物の存在を調べたい。代謝化学の実験をしていれば、ほとんどの人がそう思うのではないでしょうか…

アメリカで医者にかかる

アメリカの大学院に進学する際、とても悩んだのが、医療保険についてです。アメリカでは医療費がとても高い…

MOF 結晶表面の敏感な応答をリアルタイム観察

第178回のスポットライトリサーチは、東京大学の細野暢彦講師にお願いしました。細野先生は高分…

有機合成化学協会誌2019年2月号:触媒的脱水素化・官能性第三級アルキル基導入・コンプラナジン・アライン化学・糖鎖クラスター・サリチルアルデヒド型イネいもち病菌毒素

有機合成化学協会が発行する有機合成化学協会誌、2019年2月号がオンライン公開されました。今…

化学の学びと研究に役立つiPhone/iPad app 9選

筆者の最近では、ちょっとした計算や反応機構を描くツールとしてipadアプリ"GoodNotes"を使…

Chem-Station Twitter

PAGE TOP