[スポンサーリンク]

化学者のつぶやき

スルホキシイミンを用いた一級アミン合成法

[スポンサーリンク]

Buchwald–HartwigカップリングあるいはC–H/N–Hカップリングによって得られるN-アリールスルホキシイミンのS-N結合をラジカル開裂させることで一級のアリールアミンを合成した。

スルホキシイミンの合成と利用

スルホキシイミンはスルホンの類縁体として農薬や医薬品として注目を集めている6価の硫黄化合物である。硫黄原子が立体中心をもちうる構造のため、不斉反応にも有用な化合物である。スルホキシイミンは、スルホキシドのイミノ化あるいはスルフィルイミンの酸化により得られる。

これまで非触媒的な手法や遷移金属を用いた触媒的手法、また、多段階反応を短工程化した合成法など多岐にわたる反応が報告されている(図1A)。

最近では、トリフルオロメチル化やシアノ化、アロイル化、アリール化など、スルホキシイミンの触媒的N–H結合変換反応1)の開発が勢力的に行われている(図1B)。このように、容易にスルホキシイミンに炭素官能基が導入できるため、S–N結合を温和な条件で開裂させることができれば、多様な化合物への窒素導入法の1つとなる。

今回、アーヘン大学のBolm教授らは、N-アリールされたジベンゾチオフェン骨格をもつスルホキシイミン1のS–N結合を開裂させ、アリールアミン3を得る手法を開発したため紹介する(図1C)。

図1. スルホキシイミンの合成法およびN–H結合変換反応と新規アリールアミン合成反応

 

“Dibenzothiophene Sulfoximine as an NH3 Surrogate in the Synthesis of Primary Amines by Copper-Catalyzed C–X and C–H Bond Amination”

Li, Z.; Yu, H.; Bolm, C. Angew. Chem., Int. Ed. 2017 accepted

 DOI: 10.1002/anie.201705025

論文著者の紹介

研究者:Carsten Bolm

研究者の経歴:

1984 M.S., University of Wisconsin–Madison, USA (Prof. Hans J. Reich)
1987 Ph.D., Philipps-Universität Marburg, Germany (Prof. Manfred T. Reetz)
1987-1988 Posdoc, Massachusetts Institute of Technology, USA (Prof. K. Barry Sharpless)
1993 Associate Prof., Philipps-Universität Marburg, Germany
1996 Prof, RWTH Aachen University, Germany

研究内容:反応開発、メカノケミストリー、硫黄の化学

論文の概要

著者らはN-アリールスルホキシイミン1のS–N結合開裂において、アジドのアミンへのラジカル還元2)を参考にした (図2A)。

1に対してトリス(トリメチルシリル)シラン(TTMSS)とラジカル開始剤AIBNをトルエン溶媒中、100 °Cで加熱すると、TTMSSラジカルが1に攻撃しスルホキシド2N-シリルアリールアミニルラジカル4が生成した。4が加水分解されることで一級アリールアミン3を与えた。反応には過剰量のTTMSSを用いる必要があるものの、様々な3が良好な収率で得られた。ただし、ブロモ基を置換基にもつ1はラジカル条件にて脱ブロモ化が進行してしまうため3は低収率にとどまった。

なお、前述したようにN-アリールスルホキシイミン1は銅触媒によるジベンゾチオフェンスルホキシイミン(5)とハロゲン化アリール6とのBuchwald–Hartwigカップリングにより得られる(図2B)。

今回、著者らは官能基化されていない芳香族化合物(C–H結合)をアリール化剤として用いたC–H/N–Hカップリング反応によるN-アリールスルホキシイミン8の合成にも挑戦した。

反応条件検討の結果、5とアリールアミド7を酢酸銅(II)触媒存在下、ピリジン溶媒中、100 °Cで加熱することでカップリング体8が得られた。その後、8に対してS–N結合ラジカル開裂条件を適用することで、アミノアミド9を与えた。様々な7を用いて反応条件を適用したが、7 のC–Hカップリングの反応性と、カップリング体8のS–N結合の切れやすさは相反しており、収率は中程度にとどまった。また、3位に置換基をもつ8からは9が2つの位置異性体混合物として得られた。なお、S–N結合ラジカル開裂後に得られるスルホキシド2を回収すれば、5の合成に再び利用することができる。

以上、安定で合成容易なスルホキシイミンを“NH3”の代替剤と考え、カップリング続くS–N結合のラジカル開裂という、一級アミンの新規合成法を開発した。

図2. N-アリールスルホキシイミンのS–N結合ラジカル開裂を利用した一級アリールアミン合成法

参考文献

  1. (a) Teng, F.; Cheng, J.; Bolm, C. Lett. 2015, 17, 3166. DOI: 10.1021/acs.orglett.5b01537 (b) Hu, W.; Teng, F.; Yu, J.; Sun, S.; Cheng, J.; Shao, Y. Tetrahedron Lett. 2015, 56, 7056. DOI: 10.1016/j.tetlet.2015.11.025 (c) Zou, Y.; Xiao, J.; Peng, Z.; Dong, W.; An, D. Chem. Commun. 2015, 51, 14889. DOI: 10.1039/c5cc05483d (d) Sedelmeier, J.; Bolm, C. J. Org. Chem. 2005, 70, 6904. DOI: 10.1021/jo051066l
  2. (a) Benati, L.; Bencivenni, G.; Leardini, R.; Minozzi, M.; Nanni, D.; Scialpi, R.; Spagnolo, P.; Zanardi, G. Org. Chem. 2006, 71, 5822. DOI: 10.1021/jo060824k (b) Postigo, A.; Kopsov, S.; Ferrei, C.; Chatgilialoglu. Org. Lett.20079, 5159. DOI: 10.1021/ol7020803
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 磁石でくっつく新しい分子模型が出資募集中
  2. クロム光レドックス触媒を有機合成へ応用する
  3. 「ELEMENT GIRLS 元素周期 ~聴いて萌えちゃう化学の…
  4. 韮山反射炉に行ってみた
  5. η6配位アルキルベンゼンで全炭素(3+2)環化付加
  6. 低投資で効率的な英語学習~有用な教材は身近にある!
  7. 有機合成化学の豆知識botを作ってみた
  8. リガンド指向性化学を用いたGABAA受容体の新規創薬探索法の開発…

注目情報

ピックアップ記事

  1. Устойчивое развитие аграрного сектора экономики россии на основе механизмов государственно-частного партнерства: экономические проблемы и перспективы развития Журнал “АПК: Экономика, управление” ISSN 0235-2443
  2. MEDCHEM NEWS 31-4号「RNA制御モダリティ」
  3. カーボンナノチューブの毒性を和らげる長さ
  4. トリルテニウムドデカカルボニル / Triruthenium Dodecacarbonyl
  5. フロー法で医薬品を精密合成
  6. エレクトロクロミズム Electrochromism
  7. 信越化学、塩化ビニル樹脂を値上げ
  8. 真理を追求する –2017年度ロレアル-ユネスコ女性科学者日本奨励賞–
  9. 米デュポン、高機能化学部門を分離へ
  10. 官能基選択的な 5 員環ブロック連結反応を利用したステモアミド系アルカロイドの網羅的全合成

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年8月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP