[スポンサーリンク]

化学者のつぶやき

スルホキシイミンを用いた一級アミン合成法

Buchwald–HartwigカップリングあるいはC–H/N–Hカップリングによって得られるN-アリールスルホキシイミンのS-N結合をラジカル開裂させることで一級のアリールアミンを合成した。

スルホキシイミンの合成と利用

スルホキシイミンはスルホンの類縁体として農薬や医薬品として注目を集めている6価の硫黄化合物である。硫黄原子が立体中心をもちうる構造のため、不斉反応にも有用な化合物である。スルホキシイミンは、スルホキシドのイミノ化あるいはスルフィルイミンの酸化により得られる。

これまで非触媒的な手法や遷移金属を用いた触媒的手法、また、多段階反応を短工程化した合成法など多岐にわたる反応が報告されている(図1A)。

最近では、トリフルオロメチル化やシアノ化、アロイル化、アリール化など、スルホキシイミンの触媒的N–H結合変換反応1)の開発が勢力的に行われている(図1B)。このように、容易にスルホキシイミンに炭素官能基が導入できるため、S–N結合を温和な条件で開裂させることができれば、多様な化合物への窒素導入法の1つとなる。

今回、アーヘン大学のBolm教授らは、N-アリールされたジベンゾチオフェン骨格をもつスルホキシイミン1のS–N結合を開裂させ、アリールアミン3を得る手法を開発したため紹介する(図1C)。

図1. スルホキシイミンの合成法およびN–H結合変換反応と新規アリールアミン合成反応

 

“Dibenzothiophene Sulfoximine as an NH3 Surrogate in the Synthesis of Primary Amines by Copper-Catalyzed C–X and C–H Bond Amination”

Li, Z.; Yu, H.; Bolm, C. Angew. Chem., Int. Ed. 2017 accepted

 DOI: 10.1002/anie.201705025

論文著者の紹介

研究者:Carsten Bolm

研究者の経歴:

1984 M.S., University of Wisconsin–Madison, USA (Prof. Hans J. Reich)
1987 Ph.D., Philipps-Universität Marburg, Germany (Prof. Manfred T. Reetz)
1987-1988 Posdoc, Massachusetts Institute of Technology, USA (Prof. K. Barry Sharpless)
1993 Associate Prof., Philipps-Universität Marburg, Germany
1996 Prof, RWTH Aachen University, Germany

研究内容:反応開発、メカノケミストリー、硫黄の化学

論文の概要

著者らはN-アリールスルホキシイミン1のS–N結合開裂において、アジドのアミンへのラジカル還元2)を参考にした (図2A)。

1に対してトリス(トリメチルシリル)シラン(TTMSS)とラジカル開始剤AIBNをトルエン溶媒中、100 °Cで加熱すると、TTMSSラジカルが1に攻撃しスルホキシド2N-シリルアリールアミニルラジカル4が生成した。4が加水分解されることで一級アリールアミン3を与えた。反応には過剰量のTTMSSを用いる必要があるものの、様々な3が良好な収率で得られた。ただし、ブロモ基を置換基にもつ1はラジカル条件にて脱ブロモ化が進行してしまうため3は低収率にとどまった。

なお、前述したようにN-アリールスルホキシイミン1は銅触媒によるジベンゾチオフェンスルホキシイミン(5)とハロゲン化アリール6とのBuchwald–Hartwigカップリングにより得られる(図2B)。

今回、著者らは官能基化されていない芳香族化合物(C–H結合)をアリール化剤として用いたC–H/N–Hカップリング反応によるN-アリールスルホキシイミン8の合成にも挑戦した。

反応条件検討の結果、5とアリールアミド7を酢酸銅(II)触媒存在下、ピリジン溶媒中、100 °Cで加熱することでカップリング体8が得られた。その後、8に対してS–N結合ラジカル開裂条件を適用することで、アミノアミド9を与えた。様々な7を用いて反応条件を適用したが、7 のC–Hカップリングの反応性と、カップリング体8のS–N結合の切れやすさは相反しており、収率は中程度にとどまった。また、3位に置換基をもつ8からは9が2つの位置異性体混合物として得られた。なお、S–N結合ラジカル開裂後に得られるスルホキシド2を回収すれば、5の合成に再び利用することができる。

以上、安定で合成容易なスルホキシイミンを“NH3”の代替剤と考え、カップリング続くS–N結合のラジカル開裂という、一級アミンの新規合成法を開発した。

図2. N-アリールスルホキシイミンのS–N結合ラジカル開裂を利用した一級アリールアミン合成法

参考文献

  1. (a) Teng, F.; Cheng, J.; Bolm, C. Lett. 2015, 17, 3166. DOI: 10.1021/acs.orglett.5b01537 (b) Hu, W.; Teng, F.; Yu, J.; Sun, S.; Cheng, J.; Shao, Y. Tetrahedron Lett. 2015, 56, 7056. DOI: 10.1016/j.tetlet.2015.11.025 (c) Zou, Y.; Xiao, J.; Peng, Z.; Dong, W.; An, D. Chem. Commun. 2015, 51, 14889. DOI: 10.1039/c5cc05483d (d) Sedelmeier, J.; Bolm, C. J. Org. Chem. 2005, 70, 6904. DOI: 10.1021/jo051066l
  2. (a) Benati, L.; Bencivenni, G.; Leardini, R.; Minozzi, M.; Nanni, D.; Scialpi, R.; Spagnolo, P.; Zanardi, G. Org. Chem. 2006, 71, 5822. DOI: 10.1021/jo060824k (b) Postigo, A.; Kopsov, S.; Ferrei, C.; Chatgilialoglu. Org. Lett.20079, 5159. DOI: 10.1021/ol7020803
The following two tabs change content below.
山口 研究室
早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. Nazarov環化を利用した全合成研究
  2. 化学物質だけでiPS細胞を作る!マウスでなんと遺伝子導入なしに成…
  3. 一般人と化学者で意味が通じなくなる言葉
  4. 重いキノン
  5. 今年も出ます!サイエンスアゴラ2014
  6. 燃えないカーテン
  7. 【追悼企画】水銀そして甘み、ガンへー合成化学、創薬化学への展開ー…
  8. 博士課程学生の奨学金情報

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. アントンパール 「Monowave300」: マイクロ波有機合成の新武器
  2. 四角い断面を持つナノチューブ合成に成功
  3. ヒドロアシル化界のドンによる巧妙なジアステレオ選択性制御
  4. カーボンナノチューブ /carbon nanotube (CNT)
  5. 森田浩介 Kosuke Morita
  6. 2005年11月分の気になる化学関連ニュース投票結果
  7. 外国人研究者あるある
  8. −(マイナス)と協力して+(プラス)を強くする触媒
  9. 富山化学 新規メカニズムの抗インフルエンザ薬を承認申請
  10. ジョン・ハートウィグ John F. Hartwig

関連商品

注目情報

注目情報

最新記事

【なんと簡単な!】 カーボンナノリングを用いた多孔性ナノシートのボトムアップ合成

第 164 回目のスポットライトリサーチは東京大学大学院新領域創成科学研究科 物質系専攻の森泰造 (…

「進化分子工学によってウイルス起源を再現する」ETH Zurichより

今回は2018年度のノーベル化学賞の対象となった進化分子工学の最前線でRNA・タンパク質工学を組み合…

アントニオ・M・エチャヴァレン Antonio M. Echavarren

アントニオ・M・エチャヴァレン(Antonio M. Echavarren、1955年3月25日–)…

スルホキシドの立体化学で1,4-ジカルボニル骨格合成を制す

イナミドと光学活性なアルケニルスルホキシドから、2位および3位に置換基をもつ1,4-ジカルボニル骨格…

サッカーボール型タンパク質ナノ粒子TIP60の設計と構築

第163回目のスポットライトリサーチは、慶應義塾大学理工学部 ・川上了史(かわかみ のりふみ)講師に…

不斉カルボニル触媒で酵素模倣型不斉マンニッヒ反応

ピリドキサール生体模倣触媒によるアリールN-ホスフィニルイミン類とグリシン類の不斉マンニッヒ反応が報…

PAGE TOP