[スポンサーリンク]

化学者のつぶやき

触媒表面の化学反応をナノレベルでマッピング

[スポンサーリンク]

ミュンヘン工科大学のBandarenka教授らは、走査型トンネル顕微鏡を用いて、固体触媒表面の活性部位を直接検知することに成功しました。

“Direct instrumental identification of catalytically active surface sites”

Pfisterer, J. H. K.; Liang, Y.; Schneider, O.; Bandarenka, A. S. Nature 2017, 549, 74. DOI: 10.1038/nature23661

1. 固体触媒と表面構造

固体触媒は、化学やエネルギー産業で最も幅広く用いられている触媒の種類です。触媒と反応液が混じり合った均一系の分子触媒(図1、左)とは違い、固体触媒(右)では反応後に生成物を簡単に分離することができるため、化学工業プロセスに向いています。

図1. 分子触媒と固体触媒

この固体触媒の表面を、原子レベルで見てみましょう。

原子の配列は一様ではなく、所々に段差や空孔が存在しています(図2)。また、異なる種類の金属を組み合わせた触媒には境界面があり、単一の金属とは違った性質が現れます。さらに、金属ナノクラスターのように、個別の構造をとる触媒もあります。

図2. 固体触媒の様々な表面構造

それでは、このような固体触媒の表面において、一体どこで触媒反応は起こっているのでしょうか?より活性の高い固体触媒をデザインするためにも、触媒の活性部位を知ることはとても重要です。

2. 走査型トンネル顕微鏡(STM)

走査型トンネル顕微鏡(STM)は、固体触媒の表面特性を調べるのに便利な手法です。STMでは、探針を導電性サンプルの表面に近づけ、微小な電圧をかけることで、トンネル電流を発生させます(図3、左)。探針を水平方向に移動させながら、このトンネル電流が一定になるように、探針-サンプル間の距離を制御することで、サンプル表面の形状を原子レベルで調べることができます(図3、右)。

図3. 走査型トンネル顕微鏡(左)とMoS2ナノ粒子触媒のSTM画像(右)。STM画像は論文[1]より。 スケールバー:10 nm

しかしながら、STMでは基質や生成物の結合に関する情報は得られても、触媒反応を直接検知し、定量することはできません

3. STMのノイズと活性部位の検知

今回の論文においてBandarenka教授らは、STMのノイズを利用し、Pt触媒表面での水素発生反応(HER)や酸素還元反応(ORR)を直接測定することに成功しました。

この手法の鍵は、STMのノイズです。

STMでは、探針を動かさず、探針-サンプル間に加える電圧を一定にした場合、流れるトンネル電流も一定になり、ノイズのみが観測されます。Bandarenkaらは、探針の付近で触媒反応が起こると、観測されるノイズの大きさが変化すると予想しました(図4)。なぜなら、触媒反応が起こると、分子が触媒表面にて吸脱着したり、電解質が移動したりすることで、探針­-サンプル間のポテンシャル障壁が変化するからです。

図4. Pt電極上でのSTMノイズ測定(i) “terrace”部位, (ii) “step”部位

白金(Pt)電極上の水素発生反応(HER)は、表面が平坦な”terrace”部位ではなく、段差のある”step”部位で主に起こると考えられています。そこで、Bandarenkaらは、HERがON・OFFとなるそれぞれの電圧条件で、Pt触媒表面のSTM測定を行いました(図5)。

図5. 電解質溶液中のPt(111)表面のSTM測定。HER ‘ON’では、触媒反応が起こるよう電極に十分な負電荷が与えられている(論文より)

図5からわかるように、HERをONにした場合は、”step”部位にて大きなノイズが観測されています。一方で、HERをOFFにした場合には、”terrace”部位と”step”部位でのノイズの大きさに違いが見られません。このことから、観測されたノイズは触媒反応の進行を示していることが分かります。

4. 異種の金属の境界面における活性部位の検知

さらにBandarenkaらは、金(Au)表面にパラジウム(Pd)を蒸着させ、水素発生反応が起こる条件(HER ‘ON’)にてSTM測定を行いました(図6)。触媒活性の低いAu表面では、ノイズがほとんど観測されていないのに対し、触媒活性の高いPd上では、はっきりとノイズが観測されています。さらに注目すべきなのは、境界部のPd原子数個において、かなり大きなノイズが観測されているということです。これは、境界部のたった13個程度のPd原子が、全体の触媒活性の大部分に寄与しているということを示しています。このことから、Au/Pd界面に存在するPd原子が多くなるように固体触媒をデザインすれば、触媒活性が向上させられると考えられます。

図6. 硫酸溶液中のAu(111)とPd触媒の境界におけるSTM測定

5. おわりに

今回の研究では、1~2 nmもの分解能で電極上の化学反応を定量的に検出することが達成されています。また、本記事では細かく触れませんでしたが、今回の手法は水素発生反応(HER)よりも遅い酸素還元反応(ORR)に対しても、利用できることが示されています。今後、反応速度や表面構造の異なる固体触媒にどう応用されていくかが楽しみです。

参考文献

  1. Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Science 2007, 317, 100. 
DOI: 10.1126/science.1141483
  2. Dette, C.; Boettcher, S. W. Nature 2017, 549, 34. DOI: 10.1038/549034a
  3. Sun, T.; Yu, Y.; Zacher, B. J.; Mirkin, M. V. Angew. Chem. Int. Edn. 2014, 53, 14120. DOI: 10.1002/anie.200602750

関連書籍

[amazonjs asin=”4000111779″ locale=”JP” title=”岩波講座 物理の世界〈ものを見る、とらえる1〉走査トンネル顕微鏡技術”] [amazonjs asin=”4320044649″ locale=”JP” title=”固体触媒 (化学の要点シリーズ)”] [amazonjs asin=”4621105027″ locale=”JP” title=”実験化学講座〈25〉触媒化学、電気化学”]

 

関連リンク

Avatar photo

kanako

投稿者の記事一覧

アメリカの製薬企業の研究員。抗体をベースにした薬の開発を行なっている。
就職前は、アメリカの大学院にて化学のPhDを取得。専門はタンパク工学・ケミカルバイオロジー・高分子化学。

関連記事

  1. シンクロトロン放射光を用いたカップリング反応機構の解明
  2. 学振申請書を磨き上げるポイント ~自己評価欄 編(後編)~
  3. これで日本も産油国!?
  4. 高温焼成&乾燥プロセスの課題を解決! マイクロ波がもたらす脱炭素…
  5. 英文読解の負担を減らすマウスオーバー辞書
  6. 「サイエンスアワードエレクトロケミストリー賞」が気になったので調…
  7. 生物発光のスイッチ制御でイメージング
  8. 可視光増感型電子移動機構に基づく強還元触媒系の構築

注目情報

ピックアップ記事

  1. エナゴ「学術英語アカデミー」と記事の利用許諾契約を結びました
  2. マイクロ波プロセスを知る・話す・考える ー新たな展望と可能性を探るパネルディスカッションー
  3. メリフィールド氏死去 ノーベル化学賞受賞者
  4. 池田 菊苗 Kikunae Ikeda
  5. リチウムイオン電池の正極・負極≪活物質技術≫徹底解説セミナー
  6. 生きた細胞内でケイ素と炭素がはじめて結合!
  7. 【6月開催】 【第二期 マツモトファインケミカル技術セミナー開催】 題目:有機金属化合物 オルガチックスを用いた架橋剤としての利用(溶剤系)
  8. ケムステV年末ライブ2021開催報告! 〜今年の分子 and 人気記事 Top 10〜
  9. CIPイノベーション共創プログラム「世界に躍進する創薬・バイオベンチャーの新たな戦略」
  10. 超音波有機合成 Sonication in Organic Synthesis

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年12月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP