[スポンサーリンク]

chemglossary

液体キセノン検出器

[スポンサーリンク]

宇宙に存在して質量は持つが光学的に直接観測できない物質がダークマター(暗黒物質)であり、それを検出する装置の一部が液体キセノン検出器である。ここでは、検出器の構造とその原理、キセノンを使う理由について解説する。

 

装置の構造

検出器の構造は下の図のようになっていて、中心に液体キセノン(約マイナス100℃)が入れらていて、その外側に光電子増倍管が配置されている。その検出器の外側は水で満たされている。

アメリカの検出器の構造

 

ダークマターがキセノン原子核と弾性散乱する際にエネルギーの一部を落とすか、キセノンの電子と衝突することで発光現象が起き、その光を光電子増倍管によって検出するのが測定原理である。外側を水で満たすのは、ガンマ線を遮蔽してノイズを低減するためである。ノイズの原因は様々で、水以外にもプラスチック板など様々な遮蔽物でノイズの低減が極限まで施されている。

発光の原理とキセノンを使う理由

上記のように、ダークマターが液体キセノンの容器に入射し衝突すると光が発生する(S1)、それと同時に電子がたたき出され検出器には電極がかけられているので、電子は陽極に引き寄せられて上部ガス状のキセノンと衝突し遅延光が発せられる(S2)。

発光の原理

液体キセノンを使う理由は下記のこと挙げられる

  1. シンチレーション光を発生し、その発光量が大きいこと
  2. キセノンの質量数が大きいこと
  3. アルゴン、クリプトンと違い、キセノンには有感領域での固有のバックグラウンドとなる長寿命のアイソトープがないこと

2に関して質量するが大きいとノイズを遮蔽する能力が高いことにつながる。これによりはダークマターを測定するのに有効な液体キセノンのエリア外でノイズを遮蔽するのに役立つ。3に関して、放射性同位体である39Arは数百年、81Krは、数十万年の半減期があるため、ノイズの原因となる。一方でキセノンの天然の同位体がなく、人工合成された同位体でも数十日と短いため、放射性同位体からのノイズが少ない。

キセノンは、希ガスであり0.087 ppmしか空気中に存在しない。酸素や窒素、アルゴンガスを空気分離によって精製する際の低沸点副生成物をさらに蒸留して高純度のキセノンガスは得られている。そのため非常に高価なガスで一キロ数十万円以上する。ダークマター観測では、キセノンの純度にも実験が左右されるため、精製装置によってキセノンの純度をさらに上げている。

世界の研究活動

いくつかのグループが、この方法でダークマターの検出に取り組んでいる。日本では、岐阜県飛騨市神岡鉱山内にXMASS実験施設があり、800Kgのキセノンが入った検出で測定を行っている。ただし、5から10トンのキセノンを使用する施設改修の計画があったが、予算のめどがたたかなかったことや他国ではすでにより高感度の施設の計画があることから来年末で観測プロジェクトを終了することが決まった

イタリアには3トンのキセノンを使った施設で観測が試みられていて、アメリカでは、7トンから20トンのキセノンを使った観測施設が2020年に完成する。キセノンが多い検出器ほど検出感度が高いが、世界中で年間40トンしかキセノンは生産されておらず、半導体製造や人工衛星のイオンエンジンなどほかの用途でも需要が高まっているため、大量のキセノンを調達することは容易ではない。

一方で、キセノンを使わない検出法も研究されていて超流動ヘリウムを使った研究結果が最近報告された。これにより軽いダークマターを観測できると研究者らは主張している。

関連書籍

[amazonjs asin=”4315519626″ locale=”JP” title=”ダークマターとダークエネルギー―宇宙の96%を占める未確認の質量とエネルギー (ニュートンムック Newton別冊)”] [amazonjs asin=”B01HCOSBPW” locale=”JP” title=”やさしくわかる 周期表と元素”]

関連リンク

  • XMASS:XMASS公式サイト、ダークマターの解説のほか、施設内部をVRで見ることができ、スーパーカミオカンデと坑道でつながっていることがわかる。検出器は、円柱ではなく十二面体構造をしている。
  • The LZ Dark Matter Experiment:アメリカの研究チームLZの公式サイト
  • The XENON experiment:イタリアの研究チームXENON1Tの公式サイト
Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. アトムエコノミー Atom Economy
  2. 水晶振動子マイクロバランス(QCM)とは~表面分析・生化学研究の…
  3. A値(A value)
  4. 金属-有機構造体 / Metal-Organic Framewo…
  5. 超臨界流体 Supercritical Fluid
  6. 表現型スクリーニング Phenotypic Screening
  7. 卓上NMR
  8. 機能指向型合成 Function-Oriented Synthe…

注目情報

ピックアップ記事

  1. 第10回 ナノ構造/超分子を操る Jonathan Steed教授
  2. ボツリヌストキシン (botulinum toxin)
  3. デヴィッド・クレネマン David Klenerman
  4. 博士課程と給料
  5. 「高分子材料を進化させる表面・界面制御の基礎」
  6. 次世代電池の開発と市場予測について調査結果を発表
  7. OPRD誌を日本プロセス化学会がジャック?
  8. 米国へ講演旅行へ行ってきました:Part IV
  9. クオラムセンシング Quorum Sensing
  10. 芳香族ニトロ化合物のクロスカップリング反応

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年12月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP