[スポンサーリンク]

chemglossary

液体キセノン検出器

[スポンサーリンク]

宇宙に存在して質量は持つが光学的に直接観測できない物質がダークマター(暗黒物質)であり、それを検出する装置の一部が液体キセノン検出器である。ここでは、検出器の構造とその原理、キセノンを使う理由について解説する。

 

装置の構造

検出器の構造は下の図のようになっていて、中心に液体キセノン(約マイナス100℃)が入れらていて、その外側に光電子増倍管が配置されている。その検出器の外側は水で満たされている。

アメリカの検出器の構造

 

ダークマターがキセノン原子核と弾性散乱する際にエネルギーの一部を落とすか、キセノンの電子と衝突することで発光現象が起き、その光を光電子増倍管によって検出するのが測定原理である。外側を水で満たすのは、ガンマ線を遮蔽してノイズを低減するためである。ノイズの原因は様々で、水以外にもプラスチック板など様々な遮蔽物でノイズの低減が極限まで施されている。

発光の原理とキセノンを使う理由

上記のように、ダークマターが液体キセノンの容器に入射し衝突すると光が発生する(S1)、それと同時に電子がたたき出され検出器には電極がかけられているので、電子は陽極に引き寄せられて上部ガス状のキセノンと衝突し遅延光が発せられる(S2)。

発光の原理

液体キセノンを使う理由は下記のこと挙げられる

  1. シンチレーション光を発生し、その発光量が大きいこと
  2. キセノンの質量数が大きいこと
  3. アルゴン、クリプトンと違い、キセノンには有感領域での固有のバックグラウンドとなる長寿命のアイソトープがないこと

2に関して質量するが大きいとノイズを遮蔽する能力が高いことにつながる。これによりはダークマターを測定するのに有効な液体キセノンのエリア外でノイズを遮蔽するのに役立つ。3に関して、放射性同位体である39Arは数百年、81Krは、数十万年の半減期があるため、ノイズの原因となる。一方でキセノンの天然の同位体がなく、人工合成された同位体でも数十日と短いため、放射性同位体からのノイズが少ない。

キセノンは、希ガスであり0.087 ppmしか空気中に存在しない。酸素や窒素、アルゴンガスを空気分離によって精製する際の低沸点副生成物をさらに蒸留して高純度のキセノンガスは得られている。そのため非常に高価なガスで一キロ数十万円以上する。ダークマター観測では、キセノンの純度にも実験が左右されるため、精製装置によってキセノンの純度をさらに上げている。

世界の研究活動

いくつかのグループが、この方法でダークマターの検出に取り組んでいる。日本では、岐阜県飛騨市神岡鉱山内にXMASS実験施設があり、800Kgのキセノンが入った検出で測定を行っている。ただし、5から10トンのキセノンを使用する施設改修の計画があったが、予算のめどがたたかなかったことや他国ではすでにより高感度の施設の計画があることから来年末で観測プロジェクトを終了することが決まった

イタリアには3トンのキセノンを使った施設で観測が試みられていて、アメリカでは、7トンから20トンのキセノンを使った観測施設が2020年に完成する。キセノンが多い検出器ほど検出感度が高いが、世界中で年間40トンしかキセノンは生産されておらず、半導体製造や人工衛星のイオンエンジンなどほかの用途でも需要が高まっているため、大量のキセノンを調達することは容易ではない。

一方で、キセノンを使わない検出法も研究されていて超流動ヘリウムを使った研究結果が最近報告された。これにより軽いダークマターを観測できると研究者らは主張している。

関連書籍

関連リンク

  • XMASS:XMASS公式サイト、ダークマターの解説のほか、施設内部をVRで見ることができ、スーパーカミオカンデと坑道でつながっていることがわかる。検出器は、円柱ではなく十二面体構造をしている。
  • The LZ Dark Matter Experiment:アメリカの研究チームLZの公式サイト
  • The XENON experiment:イタリアの研究チームXENON1Tの公式サイト
The following two tabs change content below.
Zeolinite

Zeolinite

企業の研究員です。最近、合成の仕事が無くてストレスが溜まっています。

関連記事

  1. 非リボソームペプチド Non-Ribosomal Peptide…
  2. フッ素のゴーシュ効果 Fluorine gauche Effec…
  3. 多成分連結反応 Multicomponent Reaction…
  4. 不斉触媒 Asymmetric Catalysis
  5. 卓上NMR
  6. スナップタグ SNAP-tag
  7. 研究のための取引用語
  8. 分取薄層クロマトグラフィー PTLC (Preparative …

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 超分子ポリマーを精密につくる
  2. リチャード・スモーリー Richard E. Smalley
  3. 生物活性物質の化学―有機合成の考え方を学ぶ
  4. GRE Chemistry 受験報告 –試験対策編–
  5. グラクソ、抗血栓症薬「アリクストラ」の承認を取得
  6. 熱すると縮む物質を発見 京大化学研
  7. 蒲郡市生命の海科学館で化学しようよ
  8. 交差アルドール反応 Cross Aldol Reaction
  9. メタロペプチド触媒を用いるFc領域選択的な抗体修飾法
  10. 米国へ講演旅行へ行ってきました:Part III

関連商品

注目情報

注目情報

最新記事

ロータリーエバポレーターの回転方向で分子の右巻き、左巻きを制御! ―生命のホモキラリティーの起源に踏み込む―

第236回のスポットライトリサーチは、東京大学生産技術研究所 石井研究室で博士研究員をされていた、服…

「あの人は仕事ができる」と評判の人がしている3つのこと

仕事を辞めて、転職をしたいと思う動機の一つとして、「今の会社で評価されていない」という理由がある。し…

光で2-AGの量を制御する

ケージド化合物を用いた2-AG量の操作法が初めて開発された。2-AG量を時空間的に操作することができ…

葉緑素だけが集積したナノシート

第235回のスポットライトリサーチは、立命館大学 民秋研究室で博士研究員をされていた、庄司 淳(しょ…

第38回「分子組織化の多様な側面を理解する」Neil Champness教授

長らく更新が止まっていましたが、海外化学者インタビュー再開しました。Nature Chemistry…

排ガス原料のSAFでデリバリーフライトを実施

ANAは日本時間の10月30日、排ガスを原料とするSustainable Aviation Fuel…

Chem-Station Twitter

PAGE TOP