[スポンサーリンク]

化学者のつぶやき

ビニル位炭素-水素結合への形式的分子内カルベン挿入

[スポンサーリンク]

ロジウム二核錯体やヨウ化銅(I)を触媒に用いたビニル位炭素水素結合への形式的分子内カルベン挿入を伴うインデン骨格の構築法が報告された。

カルベンのC–H結合挿入反応

遷移金属触媒を用いたC–H結合へのカルベン挿入反応は金属カルベン種の特徴的な変換法の1つであり、不活性なC–H結合を炭素官能基化できる有用な手法として知られている。

電子豊富なC–H結合に限るが、C(sp3)–H結合へのカルベン挿入は協奏的機構(図1A(a))であるのに対して、芳香族C(sp2)–H結合への挿入は求電子置換反応であり形式的な”カルベン挿入”といえる(図1A(b))。

アルケンのビニル位C(sp2)–H結合への挿入反応も、一般的には求電子置換反応型で進行するが、シクロプロパン化を併発する[1]。そこで、シクロプロパン化が進行しづらい位置にオレフィンのある分子内反応にすることで、ビニル位C(sp2)–Hへのカルベン挿入を優先させることができる。

最近de Bruinらは 、コバルト触媒によるオルトビニルN-トシルヒドラゾン(R2: エステル基・フェニル基等)のビニル位C(sp2)–H結合への分子内カルベン挿入反応によりインデン類を合成した(図1B) [2]。この反応は求電子置換反応とは異なり、コバルトラジカル中間体を経て進行する。しかし、興味深いことにカルベン挿入反応でよく用いられるRh二核錯体や銅(I)触媒では進行しなかった。

今回北京大学のWang教授らは、このカルベン挿入反応を再調査し、Rh二核錯体やヨウ化銅(I)を触媒にもちいたインデン骨格の構築に成功した (図1C)。本反応は芳香族C(sp2)–H結合と同様に求電子置換反応型で進行する。

図1. (A) C(sp3)–H結合およびC(sp2)–H結合へのカルベン挿入反応の一般的な機構 (B)(C) 形式的な分子内カルベン挿入を経るインデン合成

 

Rh(II)- or Cu(I)-Catalyzed Formal Intramolecular Carbene Insertion into Vinylic C(sp2)-H Bond: An Access toward Substituted 1H Indenes

Zhou, Q.; Li, S.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2017, 50, 16013.

DOI: 10.1002/anie.201709375

論文著者の紹介

研究者:Jianbo Wang

研究者の経歴:
1979-1983 B.Sc., Nanjing University of Science and Technology
1984-1987 M.Sc., Hokkaido University (Prof. Hiroshi Suginome)
1987-1990 Ph.D., Hokkaido University (Prof. Hiroshi Suginome)
1990-1993 Posdoc, University of Geneva, Switzerland (Prof. C. W. Jefford)
1993-1995 Posdoc, University of Wisconsin-Madison, USA (Prof. H. E. Zimmerman and Prof. L. A. Fahien)
1995-1999 Associate Professor, Peking University
1999- Professor, Peking University

研究内容:金属カルベンを用いた新規触媒反応の開発

論文の概要

Wangらは求電子置換反応型の反応機構を想定していたため、オルトビニルN-トシルヒドラゾンの置換基をアリール基・アルキル基のもつ化合物を中心にして検討を行った。その結果、Rh2(Oct)4触媒存在下、リチウムt-ブトキシドを塩基に用い、オルトビニルN-トシルヒドラゾン1をトルエン溶媒中、100°Cで反応させることでインデン類2の合成に成功した(図2A)。

1の基質適用範囲に関しては、アリール部位(Ar)やビニル位(R1, R2)に置換基(アリール基・アルキル基)があっても良好な収率で2を与える。一部の基質で異性体2を生じるものの、反応時間を延ばすことで2から2に異性化できる。また、著者らはRh2(Oct)4のかわりに安価なヨウ化銅(I)を用いても、やや収率は劣るが同様の反応が進行することを見出した。

重水素ラベル化およびKIE実験による機構解明の結果、以下の反応経路が示唆された(図2B)。

  1. 1と塩基によるジアゾ化合物の生成、続くロジウム触媒による金属カルベノイド3の発生
  2. 電子不足なカルベン炭素へのビニルオレフィンの求核攻撃による5員環中間体4の形成
  3.  5のC–Rh結合からの電子移動による不飽和5員環5の生成
  4. 5から1,5-水素移動を経て2となる

という機構である。5の1,5-水素移動の際、異性体2’を生じうるが、加熱し続けることで熱力学的に安定な 2へ異性化できる。

図2.(A)基質適用範囲検討 (B)推定反応機構

 

参考文献

  1. Taber, D. F.; Amedio Jr., J. C.; Sherrill, R. G. J. Org. Chem. 1986, 51, 3382. DOI:10.1021/jo00367a030
  2. Das, B. G.; Chirila, A.; Tromp, M.; Reek, J. N. H.; de Bruin, B. J. Am. Chem. Soc. 2016, 138, 8968. DOI:10.1021/jacs.6b05434
山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. Scifinderが実験項情報閲覧可能に!
  2. き裂を高速で修復する自己治癒材料
  3. ボロールで水素を活性化
  4. 書物から学ぶ有機化学 1
  5. JSRとはどんな会社?-2
  6. NIMSフォーラム 「未来のエネルギーをつむぐ新材料・新物質、こ…
  7. 核酸医薬の物語3「核酸アプタマーとデコイ核酸」
  8. 島津製作所がケムステVシンポに協賛しました

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 単結合を極める
  2. デュボア アミノ化反応 Du Bois Amination
  3. 水口 賢司 Kenji Mizuguchi
  4. 金属カルベノイドを用いるシクロプロパン化 Cyclopropanation with Metal Carbenoid
  5. 芳香族求核置換反応 Nucleophilic Aromatic Substitution
  6. 手術中にガン組織を見分ける標識試薬
  7. カルベンで挟む!
  8. クリストファー・チャン Christopher J. Chang
  9. ゾル-ゲル変化を自ら繰り返すアメーバのような液体の人工合成
  10. 有機化合物合成中に発火、理化学研が半焼--仙台 /宮城

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

第137回―「リンや硫黄を含む化合物の不斉合成法を開発する」Stuart Warren教授

第137回の海外化学者インタビューはスチュアート・ウォーレン教授です。ケンブリッジ大学化学科に所属し…

吉岡里帆さん演じる「化学大好きDIC岡里帆(ディーアイシーおか・りほ)」シリーズ、第2弾公開!

印刷インキや有機顔料世界トップシェアのDIC株式会社は、2021年1月より、数々のヒット作に出演し、…

第14回ケムステVシンポ「スーパー超分子ワールド」を開催します!

ケムステーションをご覧の方々、あけましておめでとうございます。本年もどうぞよろしくお願い申し上げます…

【日産化学】新卒採用情報(2022卒)

―ぶれずに価値創造。私たちは、生み出し続ける新たな価値で、ライフサイエンス・情報通信・環境エ…

高分子鎖デザインがもたらすポリマーサイエンスの再創造|オンライン R2

詳細・お申込みはこちら日時令和3年 2月18日、25日(木) 基礎編        …

化学者のためのエレクトロニクス講座~電解で起こる現象編~

化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレクトロ…

Machine learning-driven optimization in powder manufacturing of Ni-Co based superalloy

NIMS は、機械学習を適用することで、航空機エンジン用材料として有望な Ni-Co 基超合金の高性…

実験白衣を10種類試してみた

化学実験関連商品紹介動画シリーズ第二弾です。前回は実験メガネを紹介しました。今回は実験メガネ…

Chem-Station Twitter

PAGE TOP