[スポンサーリンク]

化学者のつぶやき

ビニル位炭素-水素結合への形式的分子内カルベン挿入

ロジウム二核錯体やヨウ化銅(I)を触媒に用いたビニル位炭素水素結合への形式的分子内カルベン挿入を伴うインデン骨格の構築法が報告された。

カルベンのC–H結合挿入反応

遷移金属触媒を用いたC–H結合へのカルベン挿入反応は金属カルベン種の特徴的な変換法の1つであり、不活性なC–H結合を炭素官能基化できる有用な手法として知られている。

電子豊富なC–H結合に限るが、C(sp3)–H結合へのカルベン挿入は協奏的機構(図1A(a))であるのに対して、芳香族C(sp2)–H結合への挿入は求電子置換反応であり形式的な”カルベン挿入”といえる(図1A(b))。

アルケンのビニル位C(sp2)–H結合への挿入反応も、一般的には求電子置換反応型で進行するが、シクロプロパン化を併発する[1]。そこで、シクロプロパン化が進行しづらい位置にオレフィンのある分子内反応にすることで、ビニル位C(sp2)–Hへのカルベン挿入を優先させることができる。

最近de Bruinらは 、コバルト触媒によるオルトビニルN-トシルヒドラゾン(R2: エステル基・フェニル基等)のビニル位C(sp2)–H結合への分子内カルベン挿入反応によりインデン類を合成した(図1B) [2]。この反応は求電子置換反応とは異なり、コバルトラジカル中間体を経て進行する。しかし、興味深いことにカルベン挿入反応でよく用いられるRh二核錯体や銅(I)触媒では進行しなかった。

今回北京大学のWang教授らは、このカルベン挿入反応を再調査し、Rh二核錯体やヨウ化銅(I)を触媒にもちいたインデン骨格の構築に成功した (図1C)。本反応は芳香族C(sp2)–H結合と同様に求電子置換反応型で進行する。

図1. (A) C(sp3)–H結合およびC(sp2)–H結合へのカルベン挿入反応の一般的な機構 (B)(C) 形式的な分子内カルベン挿入を経るインデン合成

 

Rh(II)- or Cu(I)-Catalyzed Formal Intramolecular Carbene Insertion into Vinylic C(sp2)-H Bond: An Access toward Substituted 1H Indenes

Zhou, Q.; Li, S.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2017, 50, 16013.

DOI: 10.1002/anie.201709375

論文著者の紹介

研究者:Jianbo Wang

研究者の経歴:
1979-1983 B.Sc., Nanjing University of Science and Technology
1984-1987 M.Sc., Hokkaido University (Prof. Hiroshi Suginome)
1987-1990 Ph.D., Hokkaido University (Prof. Hiroshi Suginome)
1990-1993 Posdoc, University of Geneva, Switzerland (Prof. C. W. Jefford)
1993-1995 Posdoc, University of Wisconsin-Madison, USA (Prof. H. E. Zimmerman and Prof. L. A. Fahien)
1995-1999 Associate Professor, Peking University
1999- Professor, Peking University

研究内容:金属カルベンを用いた新規触媒反応の開発

論文の概要

Wangらは求電子置換反応型の反応機構を想定していたため、オルトビニルN-トシルヒドラゾンの置換基をアリール基・アルキル基のもつ化合物を中心にして検討を行った。その結果、Rh2(Oct)4触媒存在下、リチウムt-ブトキシドを塩基に用い、オルトビニルN-トシルヒドラゾン1をトルエン溶媒中、100°Cで反応させることでインデン類2の合成に成功した(図2A)。

1の基質適用範囲に関しては、アリール部位(Ar)やビニル位(R1, R2)に置換基(アリール基・アルキル基)があっても良好な収率で2を与える。一部の基質で異性体2を生じるものの、反応時間を延ばすことで2から2に異性化できる。また、著者らはRh2(Oct)4のかわりに安価なヨウ化銅(I)を用いても、やや収率は劣るが同様の反応が進行することを見出した。

重水素ラベル化およびKIE実験による機構解明の結果、以下の反応経路が示唆された(図2B)。

  1. 1と塩基によるジアゾ化合物の生成、続くロジウム触媒による金属カルベノイド3の発生
  2. 電子不足なカルベン炭素へのビニルオレフィンの求核攻撃による5員環中間体4の形成
  3.  5のC–Rh結合からの電子移動による不飽和5員環5の生成
  4. 5から1,5-水素移動を経て2となる

という機構である。5の1,5-水素移動の際、異性体2’を生じうるが、加熱し続けることで熱力学的に安定な 2へ異性化できる。

図2.(A)基質適用範囲検討 (B)推定反応機構

 

参考文献

  1. Taber, D. F.; Amedio Jr., J. C.; Sherrill, R. G. J. Org. Chem. 1986, 51, 3382. DOI:10.1021/jo00367a030
  2. Das, B. G.; Chirila, A.; Tromp, M.; Reek, J. N. H.; de Bruin, B. J. Am. Chem. Soc. 2016, 138, 8968. DOI:10.1021/jacs.6b05434
The following two tabs change content below.
山口 研究室
早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。
山口 研究室

最新記事 by 山口 研究室 (全て見る)

関連記事

  1. シリカゲルはメタノールに溶けるのか?
  2. DNAを人工的につくる-生体内での転写・翻訳に成功!
  3. 芳香族性に関する新概念と近赤外吸収制御への応用
  4. 研究室クラウド設立のススメ(経緯編)
  5. 2013年ケムステ人気記事ランキング
  6. iPadで計算化学にチャレンジ:iSpartan
  7. マイクロ波とイオン性液体で単層グラフェン大量迅速合成
  8. ここまでできる!?「DNA折り紙」の最先端 ② ~巨大な平面構造…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. Greene’s Protective Groups in Organic Synthesis
  2. 根岸試薬(Cp2Zr) Negishi Reagent
  3. デュポン子会社が植物性化学原料の出荷を開始
  4. バリー・シャープレス Karl Barry Sharpless
  5. で、その研究はなんの役に立つの?
  6. ヘル・フォルハルト・ゼリンスキー反応 Hell-Volhard-Zelinsky Reaction
  7. 多核テルビウムクラスターにおけるエネルギー移動機構の解明
  8. 創薬開発で使用される偏った有機反応
  9. 化学とウェブのフュージョン
  10. シランカップリング剤入門【終了】

関連商品

注目情報

注目情報

最新記事

鉄カルベン活性種を用いるsp3 C-Hアルキル化

2017年、イリノイ大学 M. Christina Whiteらは鉄フタロシアニン触媒から生成するメ…

「生合成に基づいた網羅的な天然物全合成」—カリフォルニア大学バークレー校・Sarpong研より

「ケムステ海外研究記」の第19回目は、向井健さんにお願いしました。向井さんはカリフォルニア大…

研究者向けプロフィールサービス徹底比較!

研究者にとって、業績を適切に管理しアピールすることは重要です。以前にも少し触れましたが、科研費の審査…

天然有機化合物の全合成:独創的なものづくりの反応と戦略

概要生物活性天然有機化合物(天然物)は生命の40億年にわたる進化によって選択された高機能分子…

細菌を取り巻く生体ポリマーの意外な化学修飾

地球上に最もたくさんある有機化合物は何でしょう?それは、野菜や果物、紙、Tシャツ、木材、etc…身の…

有機分子触媒ーChemical Times特集より

関東化学が発行する化学情報誌「ケミカルタイムズ」。年4回発行のこの無料雑誌の紹介をしています。…

Chem-Station Twitter

PAGE TOP