[スポンサーリンク]

化学者のつぶやき

アノードカップリングにより完遂したテバインの不斉全合成

[スポンサーリンク]

電気を用いた位置およびジアステレオ選択的なカップリング反応により、(-)-thebaineの生体模倣合成を達成した。酸化剤や毒性のある試薬を用いる必要がないという利点がある。

生合成模倣酸化的カップリング

テバイン(thebaine)はコデイン(codeine)やモルヒネ(morphine)・その他オピオイド鎮痛薬の半合成中間体であり、長きにわたり合成標的として扱われている。
morphineがレチクリン(reticuline)の4a-2’位選択的な酸化的カップリングにより骨格形成されるという生合成経路が判明すると[1]、生合成経路を模倣したカップリングの条件検討が行われた。
様々な化学量論量の酸化剤による酸化的カップリングが試される中、1971年Millerらは電解酸化カップリング(アノードカップリング)を試みた(図1A)。すなわち、酸化剤を用いず、電気でreticulineの類縁体laudanosine (R= Me)を酸化した。その結果望みの4a-2’位でなく4a-6’位でカップリングが進行した化合物のみが得られた[2]。現在までに、この基質でのアノードカップリングによる4a-2’位での結合形成は達成されていない。laudanosineの5’位にも酸素官能基が導入された1[3]や3’位と5’位に同じ酸素官能基の入った2,3では[4]、2’位と6’位の位置選択性を無視できる。しかし、2, 3では、続く誘導化に難があり、thebaineの合成には至っていない。
マインツ大学Opatz教授らはこのアノードカップリングを、3’位と5’位に異なる酸素官能基のついた化合物を用いて精査した。その結果、4を用いた場合、4a-2’位で選択的に進行し、その後thebaineへの誘導化にも成功したので紹介する(図1B)。

図1.(A) 従来のアノードカップリング (B) 今回のアノードカップリング

 

“A Regio- and Diastereoselective Anodic Aryl–Aryl Coupling in the Biomimetic Total Synthesis of (–) Thebaine”
Lipp, A.; Ferenc, D.; Gutz, C.; gaffe, M.; Vierengel, N.; Schollmeyer, D.; Schafer, H, J.; Waldvogel, S. R.; Opatz, T. Angew. Chem., Int. Ed. Early view.
DOI: 10.1002/anie.201803887

論文著者の紹介


研究者:Till Opatz
研究者の経歴:
1992-1997 B.S. Diploma, University of Frankfurt (Prof. Johann Mulzer)
1997-2001Ph.D., University of Mainz (Prof.Horst Kurz)
2001-2002 Posdoc, Utrecht University (Prof. Rob M. J. Liskamp)
2002-2006 Habilitation, University of Mainz
2007-2010 Professor, University of Hamburg
2010- Professor, Johannes Gutenberg-University of Mainz
研究内容:天然物全合成、グリーンケミストリー、α-アミノニトリルの研究

論文の概要

Opatzらは、3’位と5’位の置換基が異なる種々の化合物4(5’位の置換基はBnに固定)を用いて4a-2’位選択的なカップリング反応を検討した(図2A)。
すると、この場合は完全に4a-2’位で酸化的カップリングが進行した5のみ得られた。特にRがアセチル基の4を用いると最もよい収率で目的のカップリング体5が得られた。さらに反応の条件検討を行い、収率62%まで向上させることに成功した。続いて、thebaineの全合成を試みた(図2B)。安価な原料から7工程で(-)–6を合成、さらに2工程を経て4とした。4をアノードカップリングの最適条件に付すことでカップリング体5を得た。続いて5のベンジル基の除去、得られた7のトリフラート化、TfO基のPd触媒による除去により8とした。アセチル基の加水分解・ケトン還元・分子内SN2’反応を経て(3工程)(-)–thebaine の合成に成功した。なお、ベンジル基の還元より先に、アセチル基の加水分解および分子内SN2’反応を進行させた化合物9はthebaineへ誘導することはできなかった。
以上単純に置換基を変更しただけではあるものの、長年達成されなかった酸化剤をもちいないアノードカップリングによるthebaineの不斉全合成に成功したことは興味深い。

図2. 基質検討と全合成スキーム

参考文献

  1. Kirby, G. W. Science1967, 155, 170. DOI: 1126/science.155.3759.170
  2. Miller, L. L.; Stermitz, F. R.; Falck, J. R. J, Am. Chem. Soc.1971, 93, 5941. DOI: 10.1021/ja00751a083
  3. Falck, J. R.; Miller, L. L.; Stermitz, F. R. Tetrahedron. 1974, 30, 931. DOI: 1016/S0040-4020(01)97477-0
  4. (a) A. Brockmeyer, PhD-thesis, Westfälische Wilhelms-Universität Münster (Münster), 2003 (b) M. Geffe, PhD-thesis, Johannes Gutenberg Universitåt Mainz (Mainz), 2016
山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. ボロン酸エステル/ヒドラゾンの協働が実現する強固な細胞Click…
  2. 思わぬ伏兵・豚インフルエンザ
  3. 結晶スポンジ法から始まったミヤコシンの立体化学問題は意外な結末
  4. 第96回日本化学会付設展示会ケムステキャンペーン!Part II…
  5. 飽和C–H結合を直接脱離基に変える方法
  6. NMR化学シフト予測機能も!化学徒の便利モバイルアプリ
  7. iPhone/iPodTouchで使える化学アプリケーション
  8. 掃除してますか?FTIR-DRIFTチャンバー

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. リッター反応 Ritter Reaction
  2. むずかしいことば?
  3. 光延反応 Mitsunobu Reaction
  4. シランカップリング剤の反応、効果と応用【終了】
  5. 就活・転職・面接・仕事まとめ
  6. 元素の和名わかりますか?
  7. ガブリエルアミン合成 Gabriel Amine Synthesis
  8. 入門 レアアースの化学 
  9. 2016年ケムステ人気記事ランキング
  10. 病理学的知見にもとづく化学物質の有害性評価

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

研究テーマ変更奮闘記 – PhD留学(後編)

前回の記事では、私がPhD留学を始めた際のテーマ決めの流れや、その後テーマ変更を考え始めてからの教授…

ジョン・ケンドリュー John C. Kendrew

ジョン・コウデリー・ケンドリュー(John Cowdery Kendrew、1917年3月24日-1…

食品添加物はなぜ嫌われるのか: 食品情報を「正しく」読み解くリテラシー

(さらに…)…

第100回―「超分子包接による化学センシング」Yun-Bao Jiang教授

第100回の海外化学者インタビューは、Yun-Bao Jiang教授です。厦門大学化学科に所属し、電…

第七回ケムステVシンポジウム「有機合成化学の若い力」を開催します!

第5回のケムステVシンポもうすぐですね。そして、第6回からほとんど連続となりますが、第7回のケムステ…

「自分の意見を言える人」がしている3つのこと

コロナ禍の影響により、ここ数カ月はオンラインでの選考が増えている。先日、はじめてオンラインでの面接を…

ブルース・リプシュッツ Bruce H. Lipshutz

ブルース・リプシュッツ(Bruce H. Lipshutz, 1951–)はアメリカの有機化学者であ…

化学者のためのエレクトロニクス入門② ~電子回路の製造工程編~

bergです。さて、前回は日々微細化を遂げる電子回路の歴史についてご紹介しました。二回目の今回は、半…

Chem-Station Twitter

PAGE TOP