[スポンサーリンク]

化学者のつぶやき

アノードカップリングにより完遂したテバインの不斉全合成

[スポンサーリンク]

電気を用いた位置およびジアステレオ選択的なカップリング反応により、(-)-thebaineの生体模倣合成を達成した。酸化剤や毒性のある試薬を用いる必要がないという利点がある。

生合成模倣酸化的カップリング

テバイン(thebaine)はコデイン(codeine)やモルヒネ(morphine)・その他オピオイド鎮痛薬の半合成中間体であり、長きにわたり合成標的として扱われている。
morphineがレチクリン(reticuline)の4a-2’位選択的な酸化的カップリングにより骨格形成されるという生合成経路が判明すると[1]、生合成経路を模倣したカップリングの条件検討が行われた。
様々な化学量論量の酸化剤による酸化的カップリングが試される中、1971年Millerらは電解酸化カップリング(アノードカップリング)を試みた(図1A)。すなわち、酸化剤を用いず、電気でreticulineの類縁体laudanosine (R= Me)を酸化した。その結果望みの4a-2’位でなく4a-6’位でカップリングが進行した化合物のみが得られた[2]。現在までに、この基質でのアノードカップリングによる4a-2’位での結合形成は達成されていない。laudanosineの5’位にも酸素官能基が導入された1[3]や3’位と5’位に同じ酸素官能基の入った2,3では[4]、2’位と6’位の位置選択性を無視できる。しかし、2, 3では、続く誘導化に難があり、thebaineの合成には至っていない。
マインツ大学Opatz教授らはこのアノードカップリングを、3’位と5’位に異なる酸素官能基のついた化合物を用いて精査した。その結果、4を用いた場合、4a-2’位で選択的に進行し、その後thebaineへの誘導化にも成功したので紹介する(図1B)。

図1.(A) 従来のアノードカップリング (B) 今回のアノードカップリング

 

“A Regio- and Diastereoselective Anodic Aryl–Aryl Coupling in the Biomimetic Total Synthesis of (–) Thebaine”
Lipp, A.; Ferenc, D.; Gutz, C.; gaffe, M.; Vierengel, N.; Schollmeyer, D.; Schafer, H, J.; Waldvogel, S. R.; Opatz, T. Angew. Chem., Int. Ed. Early view.
DOI: 10.1002/anie.201803887

論文著者の紹介


研究者:Till Opatz
研究者の経歴:
1992-1997 B.S. Diploma, University of Frankfurt (Prof. Johann Mulzer)
1997-2001Ph.D., University of Mainz (Prof.Horst Kurz)
2001-2002 Posdoc, Utrecht University (Prof. Rob M. J. Liskamp)
2002-2006 Habilitation, University of Mainz
2007-2010 Professor, University of Hamburg
2010- Professor, Johannes Gutenberg-University of Mainz
研究内容:天然物全合成、グリーンケミストリー、α-アミノニトリルの研究

論文の概要

Opatzらは、3’位と5’位の置換基が異なる種々の化合物4(5’位の置換基はBnに固定)を用いて4a-2’位選択的なカップリング反応を検討した(図2A)。
すると、この場合は完全に4a-2’位で酸化的カップリングが進行した5のみ得られた。特にRがアセチル基の4を用いると最もよい収率で目的のカップリング体5が得られた。さらに反応の条件検討を行い、収率62%まで向上させることに成功した。続いて、thebaineの全合成を試みた(図2B)。安価な原料から7工程で(-)–6を合成、さらに2工程を経て4とした。4をアノードカップリングの最適条件に付すことでカップリング体5を得た。続いて5のベンジル基の除去、得られた7のトリフラート化、TfO基のPd触媒による除去により8とした。アセチル基の加水分解・ケトン還元・分子内SN2’反応を経て(3工程)(-)–thebaine の合成に成功した。なお、ベンジル基の還元より先に、アセチル基の加水分解および分子内SN2’反応を進行させた化合物9はthebaineへ誘導することはできなかった。
以上単純に置換基を変更しただけではあるものの、長年達成されなかった酸化剤をもちいないアノードカップリングによるthebaineの不斉全合成に成功したことは興味深い。

図2. 基質検討と全合成スキーム

参考文献

  1. Kirby, G. W. Science1967, 155, 170. DOI: 1126/science.155.3759.170
  2. Miller, L. L.; Stermitz, F. R.; Falck, J. R. J, Am. Chem. Soc.1971, 93, 5941. DOI: 10.1021/ja00751a083
  3. Falck, J. R.; Miller, L. L.; Stermitz, F. R. Tetrahedron. 1974, 30, 931. DOI: 1016/S0040-4020(01)97477-0
  4. (a) A. Brockmeyer, PhD-thesis, Westfälische Wilhelms-Universität Münster (Münster), 2003 (b) M. Geffe, PhD-thesis, Johannes Gutenberg Universitåt Mainz (Mainz), 2016
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 第36回ケムステVシンポ「光化学最前線2023」を開催します!
  2. 「銅触媒を用いた不斉ヒドロアミノ化反応の開発」-MIT Buch…
  3. 【速報】ノーベル化学賞2014ー超解像顕微鏡の開発
  4. 自宅での仕事に飽きたらプレゼン動画を見よう
  5. 分子形状初期化法「T・レックス」の実現~いつでもどこでも誰でも狙…
  6. あなたの天秤、正確ですか?
  7. ケミカル・ライトの作り方
  8. 有機合成化学協会誌2024年1月号:マイクロリアクター・官能基選…

注目情報

ピックアップ記事

  1. 第136回―「有機化学における反応性中間体の研究」Maitland Jones教授
  2. 第79回―「高分子材料と流体の理論モデリング」Anna Balazs教授
  3. 石油化学大手5社、今期の営業利益が過去最高に
  4. 最終面接で内定をもらう人の共通点について考えてみた
  5. EU、玩具へのフタル酸エステル類の使用禁止
  6. 過酸による求核的エポキシ化 Nucleophilic Epoxidation with Peroxide
  7. Dead Endを回避せよ!「全合成・極限からの一手」④(解答編)
  8. 正立方体から六面体かご型に分子骨格を変える
  9. 不活性第一級C–H結合の触媒的官能基化反応
  10. 山西芳裕 Yoshihiro Yamanishi

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年8月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

光励起で芳香族性を獲得する分子の構造ダイナミクスを解明!

第 654 回のスポットライトリサーチは、分子科学研究所 協奏分子システム研究セ…

藤多哲朗 Tetsuro Fujita

藤多 哲朗(ふじた てつろう、1931年1月4日 - 2017年1月1日)は日本の薬学者・天然物化学…

MI conference 2025開催のお知らせ

開催概要昨年エントリー1,400名超!MIに特化したカンファレンスを今年も開催近年、研究開発…

【ユシロ】新卒採用情報(2026卒)

ユシロは、創業以来80年間、“油”で「ものづくり」と「人々の暮らし」を支え続けている化学メーカーです…

Host-Guest相互作用を利用した世界初の自己修復材料”WIZARDシリーズ”

昨今、脱炭素社会への実現に向け、石油原料を主に使用している樹脂に対し、メンテナンス性の軽減や材料の長…

有機合成化学協会誌2025年4月号:リングサイズ発散・プベルル酸・イナミド・第5族遷移金属アルキリデン錯体・強発光性白金錯体

有機合成化学協会が発行する有機合成化学協会誌、2025年4月号がオンラインで公開されています!…

第57回若手ペプチド夏の勉強会

日時2025年8月3日(日)~8月5日(火) 合宿型勉強会会場三…

人工光合成の方法で有機合成反応を実現

第653回のスポットライトリサーチは、名古屋大学 学際統合物質科学研究機構 野依特別研究室 (斎藤研…

乙卯研究所 2025年度下期 研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

次世代の二次元物質 遷移金属ダイカルコゲナイド

ムーアの法則の限界と二次元半導体現代の半導体デバイス産業では、作製時の低コスト化や動作速度向上、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP