[スポンサーリンク]

ケムステニュース

原子力機構大洗研 150時間連続で水素製造 高温ガス炉 実用化へ大きく前進

[スポンサーリンク]

日本原子力研究開発機構(原子力機構)は25日、大洗町成田町の大洗研究所で高温ガス炉の高温工学試験研究炉「HTTR」の熱を利用する水素製造技術の試験で連続製造時間が150時間を超えることに成功したと発表した。950度という高温を利用できる高温ガス炉の特長を生かした、二酸化炭素(CO2)排出のない水素製造法。世界初の原子力による水素製造の実用化へ大きく前進した。  (引用:茨城新聞1月26日)

今回、ISプロセスと呼ばれる水素の製造プロセスを150時間以上稼働させることに成功しました。このISは、ヨウ素(Iodine)と硫黄(Sulfur)から名づけられている通り、硫酸とヨウ化水素、水の反応によって水素を製造するプロセスです。素反応は、

I2+SO2+2H2O → H2SO4+2HI(ブンゼン反応)
2HI → H2+I2(HI分解反応)
H2SO4 → SO2+H2O + 0.5O2(H2SO4分解反応)

から成り、プロセスとしてはH2O → H2+0.5O2と水が分解する反応となります。この反応に必要なのはヨウ化水素と三酸化硫黄を分解する高温熱源で、それを高温ガス炉と呼ばれる新しい原子力炉から取り出そうと原子力機構は研究を続けています。

ISプロセスの概略構成(引用:高温ガス炉水素・熱利用研究センター

現在の水素製造の主流は化石燃料の水蒸気改質であるため、結局枯渇していく化石燃料を使い二酸化炭素も副生成物として発生します。一方でこの高温ガス炉+ISプロセスを使えば二酸化炭素は発生せず、水素製造コストも他の技術と同程度となると予想されています。

これまでのISプロセスの最長運転時間は中国での60時間で、原子力機構では配管の内部のコーティングを変えるなど、腐食性のある流体に耐えうる装置の開発、改良を重ねることで、長時間運転の目安となる150時間の連続水素製造に成功したそうです。ただしこの運転では電気ヒーターによる熱を利用していて、原子炉の運転によって生じた熱て水素を製造したわけではありません。この水素製造に使われる原子炉HTTRは現在運転停止中で、2014年に新規制基準適合審査を申請し今年10月の運転再開を目指しているようです。

今回の実験では使われなかった高温ガス炉についてですが、現在使われている原子炉との最大の違いは熱媒体です。現行の原子炉では水を使って蒸気を作り出し、タービンを回すことで発電しますが、高温ガス炉ではヘリウムを高温にすることでタービンを回して発電します。水を原子炉で使わないため、福島第一原発事故のように高温による水素ガスの発生が起きません。また原子炉の構造と使用している材料により電源喪失による熱暴走が起きないことが確認されています。以上のような理由により安全性が高い原子炉とされています。

高温ガス炉の構造(引用:高温工学試験研究炉

原発に対するイメージは福島第一原発の事故により大きく変わりましたが、上記のような利便性と高い安全性により高温ガス炉は開発が続けられていて、平成26年4月11日に閣議決定されたエネルギー基本計画では、水素製造などの産業利用が見込まれ、安全性の高度化に貢献する原子力技術として、高温ガス炉の研究開発を国際協力の下で推進することが明記されました。さらに平成29年6月9日に閣議決定された「未来投資戦略」2017-Society5.0の実現に向けた改革-においても、国際協力も適切に進めながら高温ガス炉を活用することなど将来に向けた研究開発の推進や人材育成等に着実に取り組むことが政府の方針として明記されています。

もちろん高温ガス炉も、原子炉であるため放射性廃棄物が発生します。そのため発電も水素製造としてもほかのテクノロジーと比べると、副生成物として放射性廃棄物か二酸化炭素のどちらが悪いかというに議論は行きつきます。多くの人類が豊かに生活していく以上、環境負荷をゼロにすることは不可能であり、国や地域の事情に応じて最善のテクノロジーを利用していくしかないのではないでしょうか。

関連書籍

関連リンク

Zeolinite

Zeolinite

投稿者の記事一覧

企業の研究員です。最近、合成の仕事が無くてストレスが溜まっています。

関連記事

  1. 2011年10大化学ニュース【前編】
  2. 世界初!うつ病が客観的に診断可能に!?
  3. 次世代電池の開発と市場予測について調査結果を発表
  4. 酸化亜鉛を用い青色ダイオード 東北大開発 コスト減期待
  5. 化学系プレプリントサーバ「ChemRxiv」の設立が決定
  6. 「2010年トップ3を目指す」万有製薬平手社長
  7. 米デュポン、原料高騰で製品値上げ
  8. ノーベル医学生理学賞、米の2氏に

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 近くにラジカルがいるだけでベンゼンの芳香族性が崩れた!
  2. ライオン、男性の体臭の原因物質「アンドロステノン」の解明とその抑制成分の開発に成功
  3. Illustrated Guide to Home Chemistry Experiments
  4. グラフィカルアブストラクト付・化学系ジャーナルRSSフィード
  5. グラフェンの量産化技術と次世代デバイスへの応用【終了】
  6. ヴィンス・ロテロ Vincent M. Rotello
  7. 第58回―「集積構造体を生み出すポリマー合成」Barney Grubbs教授
  8. レザ・ガディリ M. Reza Ghadiri
  9. スナップタグ SNAP-tag
  10. カーボンナノベルト合成初成功の舞台裏 (3) 完結編

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

キムワイプをつくった会社 ~キンバリー・クラーク社について~

Tshozoです。本件先日掲載されたこちらのArticleの追っかけでネタ色が強いですが書いてみるこ…

Advanced Real‐Time Process Analytics for Multistep Synthesis in Continuous Flow

In multistep continuous flow chemistry, studying c…

三角形ラジカルを使って発光性2次元ハニカムスピン格子構造を組み立てる!

第309回のスポットライトリサーチは、木村舜 博士にお願いしました。金属と有機配位子がネット…

第148回―「フッ素に関わる遷移金属錯体の研究」Graham Saunders准教授

第148回の海外化学者インタビューは、グラハム・サウンダース准教授です。ニュージーランドのハミルトン…

ケムステチャンネルをチャンネル登録しませんか?

5月11日で化学の情報サイトケムステは開設21周年を迎えます。これまで記事中心の活動を行ってきました…

化学研究で役に立つデータ解析入門:回帰分析の活用を広げる編

前回の化学研究で役に立つデータ解析入門:回帰分析の応用編では、Rを使ってエクセルにはできない回帰分析…

いろんなカタチの撹拌子を試してみた

大好評、「試してみた」シリーズの第5弾。今回は様々な化合物を反応させる際に必須な撹拌子(回転…

【マイクロ波化学(株)医薬分野向けウェビナー】 #ペプチド #核酸 #有機合成 #凍結乾燥 第3のエネルギーがプロセスと製品を変える  マイクロ波適用例とスケールアップ

<内容>本イベントは、医薬分野向けに事業・開発課題のソリューションとして、マイクロ波の適用例や効…

Chem-Station Twitter

PAGE TOP