[スポンサーリンク]

ケムステニュース

原子力機構大洗研 150時間連続で水素製造 高温ガス炉 実用化へ大きく前進

[スポンサーリンク]

日本原子力研究開発機構(原子力機構)は25日、大洗町成田町の大洗研究所で高温ガス炉の高温工学試験研究炉「HTTR」の熱を利用する水素製造技術の試験で連続製造時間が150時間を超えることに成功したと発表した。950度という高温を利用できる高温ガス炉の特長を生かした、二酸化炭素(CO2)排出のない水素製造法。世界初の原子力による水素製造の実用化へ大きく前進した。  (引用:茨城新聞1月26日)

今回、ISプロセスと呼ばれる水素の製造プロセスを150時間以上稼働させることに成功しました。このISは、ヨウ素(Iodine)と硫黄(Sulfur)から名づけられている通り、硫酸とヨウ化水素、水の反応によって水素を製造するプロセスです。素反応は、

I2+SO2+2H2O → H2SO4+2HI(ブンゼン反応)
2HI → H2+I2(HI分解反応)
H2SO4 → SO2+H2O + 0.5O2(H2SO4分解反応)

から成り、プロセスとしてはH2O → H2+0.5O2と水が分解する反応となります。この反応に必要なのはヨウ化水素と三酸化硫黄を分解する高温熱源で、それを高温ガス炉と呼ばれる新しい原子力炉から取り出そうと原子力機構は研究を続けています。

ISプロセスの概略構成(引用:高温ガス炉水素・熱利用研究センター

現在の水素製造の主流は化石燃料の水蒸気改質であるため、結局枯渇していく化石燃料を使い二酸化炭素も副生成物として発生します。一方でこの高温ガス炉+ISプロセスを使えば二酸化炭素は発生せず、水素製造コストも他の技術と同程度となると予想されています。

これまでのISプロセスの最長運転時間は中国での60時間で、原子力機構では配管の内部のコーティングを変えるなど、腐食性のある流体に耐えうる装置の開発、改良を重ねることで、長時間運転の目安となる150時間の連続水素製造に成功したそうです。ただしこの運転では電気ヒーターによる熱を利用していて、原子炉の運転によって生じた熱て水素を製造したわけではありません。この水素製造に使われる原子炉HTTRは現在運転停止中で、2014年に新規制基準適合審査を申請し今年10月の運転再開を目指しているようです。

今回の実験では使われなかった高温ガス炉についてですが、現在使われている原子炉との最大の違いは熱媒体です。現行の原子炉では水を使って蒸気を作り出し、タービンを回すことで発電しますが、高温ガス炉ではヘリウムを高温にすることでタービンを回して発電します。水を原子炉で使わないため、福島第一原発事故のように高温による水素ガスの発生が起きません。また原子炉の構造と使用している材料により電源喪失による熱暴走が起きないことが確認されています。以上のような理由により安全性が高い原子炉とされています。

高温ガス炉の構造(引用:高温工学試験研究炉

原発に対するイメージは福島第一原発の事故により大きく変わりましたが、上記のような利便性と高い安全性により高温ガス炉は開発が続けられていて、平成26年4月11日に閣議決定されたエネルギー基本計画では、水素製造などの産業利用が見込まれ、安全性の高度化に貢献する原子力技術として、高温ガス炉の研究開発を国際協力の下で推進することが明記されました。さらに平成29年6月9日に閣議決定された「未来投資戦略」2017-Society5.0の実現に向けた改革-においても、国際協力も適切に進めながら高温ガス炉を活用することなど将来に向けた研究開発の推進や人材育成等に着実に取り組むことが政府の方針として明記されています。

もちろん高温ガス炉も、原子炉であるため放射性廃棄物が発生します。そのため発電も水素製造としてもほかのテクノロジーと比べると、副生成物として放射性廃棄物か二酸化炭素のどちらが悪いかというに議論は行きつきます。多くの人類が豊かに生活していく以上、環境負荷をゼロにすることは不可能であり、国や地域の事情に応じて最善のテクノロジーを利用していくしかないのではないでしょうか。

関連書籍

[amazonjs asin=”B012ZISNM6″ locale=”JP” title=”トリプルジェネレーション型次世代原子炉: 「高温ガス炉」の安全性と多機能性”] [amazonjs asin=”4907002580″ locale=”JP” title=”再生可能エネルギーによる水素製造”]

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 新薬と併用、高い効果
  2. トクヤマが参入へ/燃料電池部材市場
  3. シュプリンガー・ネイチャー・グループが学問の継続のために経済的な…
  4. 昭和電工、青色LEDに参入
  5. 吉野彰氏がリチウムイオン電池技術の発明・改良で欧州発明家賞にノミ…
  6. 2009年10大化学ニュース【Part2】
  7. 東海カーボンと三菱化学、カーボンブラックの共同会社を断念
  8. NITEが化学品のSDS作成支援システムをNITE-Gmiccs…

注目情報

ピックアップ記事

  1. Qi-Lin Zhou 周其林
  2. インタビューリンクー住化廣瀬社長、旭化成藤原社長
  3. 越野 広雪 Hiroyuki Koshino
  4. ケーニッヒ・クノール グリコシド化反応 Koenigs-Knorr Glycosidation
  5. リサイクルが容易な新しいプラスチックを研究者が開発
  6. ジオキシラン酸化 Oxidation with Dioxirane
  7. 日本化学会 第104春季年会 付設展示会ケムステキャンペーン Part1
  8. 環サイズを選択できるジアミノ化
  9. 最期の病:悪液質
  10. オカモト株式会社茨城工場

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年2月
 123
45678910
11121314151617
18192021222324
25262728  

注目情報

最新記事

第42回メディシナルケミストリーシンポジウム

テーマAI×創薬 無限能可能性!? ノーベル賞研究が拓く創薬の未来を探る…

山口 潤一郎 Junichiro Yamaguchi

山口潤一郎(やまぐちじゅんいちろう、1979年1月4日–)は日本の有機化学者である。早稲田大学教授 …

ナノグラフェンの高速水素化に成功!メカノケミカル法を用いた芳香環の水素化

第660回のスポットライトリサーチは、名古屋大学大学院理学研究科(有機化学研究室)博士後期課程3年の…

第32回光学活性化合物シンポジウム

第32回光学活性化合物シンポジウムのご案内光学活性化合物の合成および機能創出に関する研究で顕著な…

位置・立体選択的に糖を重水素化するフロー合成法を確立 ― Ru/C触媒カートリッジで150時間以上の連続運転を実証 ―

第 659回のスポットライトリサーチは、岐阜薬科大学大学院 アドバンストケミストリー…

【JAICI Science Dictionary Pro (JSD Pro)】CAS SciFinder®と一緒に活用したいサイエンス辞書サービス

ケムステ読者の皆様には、CAS が提供する科学情報検索ツール CAS SciFind…

有機合成化学協会誌2025年5月号:特集号 有機合成化学の力量を活かした構造有機化学のフロンティア

有機合成化学協会が発行する有機合成化学協会誌、2025年5月号がオンラインで公開されています!…

ジョセップ・コルネラ Josep Cornella

ジョセップ・コルネラ(Josep Cornella、1985年2月2日–)はスペイン出身の有機・無機…

電気化学と数理モデルを活用して、複雑な酵素反応の解析に成功

第658回のスポットライトリサーチは、京都大学大学院 農学研究科(生体機能化学研究室)修士2年の市川…

ティム ニューハウス Timothy R. Newhouse

ティモシー・ニューハウス(Timothy R. Newhouse、19xx年xx月x日–)はアメリカ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP