[スポンサーリンク]

ケムステニュース

原子力機構大洗研 150時間連続で水素製造 高温ガス炉 実用化へ大きく前進

[スポンサーリンク]

日本原子力研究開発機構(原子力機構)は25日、大洗町成田町の大洗研究所で高温ガス炉の高温工学試験研究炉「HTTR」の熱を利用する水素製造技術の試験で連続製造時間が150時間を超えることに成功したと発表した。950度という高温を利用できる高温ガス炉の特長を生かした、二酸化炭素(CO2)排出のない水素製造法。世界初の原子力による水素製造の実用化へ大きく前進した。  (引用:茨城新聞1月26日)

今回、ISプロセスと呼ばれる水素の製造プロセスを150時間以上稼働させることに成功しました。このISは、ヨウ素(Iodine)と硫黄(Sulfur)から名づけられている通り、硫酸とヨウ化水素、水の反応によって水素を製造するプロセスです。素反応は、

I2+SO2+2H2O → H2SO4+2HI(ブンゼン反応)
2HI → H2+I2(HI分解反応)
H2SO4 → SO2+H2O + 0.5O2(H2SO4分解反応)

から成り、プロセスとしてはH2O → H2+0.5O2と水が分解する反応となります。この反応に必要なのはヨウ化水素と三酸化硫黄を分解する高温熱源で、それを高温ガス炉と呼ばれる新しい原子力炉から取り出そうと原子力機構は研究を続けています。

ISプロセスの概略構成(引用:高温ガス炉水素・熱利用研究センター

現在の水素製造の主流は化石燃料の水蒸気改質であるため、結局枯渇していく化石燃料を使い二酸化炭素も副生成物として発生します。一方でこの高温ガス炉+ISプロセスを使えば二酸化炭素は発生せず、水素製造コストも他の技術と同程度となると予想されています。

これまでのISプロセスの最長運転時間は中国での60時間で、原子力機構では配管の内部のコーティングを変えるなど、腐食性のある流体に耐えうる装置の開発、改良を重ねることで、長時間運転の目安となる150時間の連続水素製造に成功したそうです。ただしこの運転では電気ヒーターによる熱を利用していて、原子炉の運転によって生じた熱て水素を製造したわけではありません。この水素製造に使われる原子炉HTTRは現在運転停止中で、2014年に新規制基準適合審査を申請し今年10月の運転再開を目指しているようです。

今回の実験では使われなかった高温ガス炉についてですが、現在使われている原子炉との最大の違いは熱媒体です。現行の原子炉では水を使って蒸気を作り出し、タービンを回すことで発電しますが、高温ガス炉ではヘリウムを高温にすることでタービンを回して発電します。水を原子炉で使わないため、福島第一原発事故のように高温による水素ガスの発生が起きません。また原子炉の構造と使用している材料により電源喪失による熱暴走が起きないことが確認されています。以上のような理由により安全性が高い原子炉とされています。

高温ガス炉の構造(引用:高温工学試験研究炉

原発に対するイメージは福島第一原発の事故により大きく変わりましたが、上記のような利便性と高い安全性により高温ガス炉は開発が続けられていて、平成26年4月11日に閣議決定されたエネルギー基本計画では、水素製造などの産業利用が見込まれ、安全性の高度化に貢献する原子力技術として、高温ガス炉の研究開発を国際協力の下で推進することが明記されました。さらに平成29年6月9日に閣議決定された「未来投資戦略」2017-Society5.0の実現に向けた改革-においても、国際協力も適切に進めながら高温ガス炉を活用することなど将来に向けた研究開発の推進や人材育成等に着実に取り組むことが政府の方針として明記されています。

もちろん高温ガス炉も、原子炉であるため放射性廃棄物が発生します。そのため発電も水素製造としてもほかのテクノロジーと比べると、副生成物として放射性廃棄物か二酸化炭素のどちらが悪いかというに議論は行きつきます。多くの人類が豊かに生活していく以上、環境負荷をゼロにすることは不可能であり、国や地域の事情に応じて最善のテクノロジーを利用していくしかないのではないでしょうか。

関連書籍

[amazonjs asin=”B012ZISNM6″ locale=”JP” title=”トリプルジェネレーション型次世代原子炉: 「高温ガス炉」の安全性と多機能性”] [amazonjs asin=”4907002580″ locale=”JP” title=”再生可能エネルギーによる水素製造”]

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. オルガテクノ大賞2005受賞者決定!
  2. 相次ぐ”業務用洗剤”による事故
  3. 「薬草、信じて使うこと」=自分に合ったものを選ぶ
  4. 創造化学研究所、環境負荷の少ない実証ベンチプラント稼動へ
  5. 文化勲章にノーベル賞の天野さん・中村さんら7人
  6. EUのナノマテリアル監視機関が公式サイトをオープン
  7. 信越化学・旭化成ケミカルズが石化品値上げ
  8. サクラの酵母で作った赤い日本酒を商品化に成功

注目情報

ピックアップ記事

  1. Bayer Material Scienceの分離独立が語るもの
  2. 紫綬褒章化学者一覧 Medal with Purple Ribbon
  3. バートン・マクコンビー脱酸素化 Barton-McCombie Deoxygenation
  4. 第146回―「原子から社会までの課題を化学で解決する」中村栄一 教授
  5. 第97回 触媒化学融合研究センター講演会に参加してみた
  6. 硫黄-フッ素交換反応 Sulfur(VI)-Fluoride Exchange (SuFEx)
  7. とある難病の薬 ~アザシチジンとその仲間~
  8. 分子模型を比べてみた
  9. 日本化学会 第104春季年会 付設展示会ケムステキャンペーン Part1
  10. 当量と容器サイズでヒドロアミノアルキル化反応を制御する

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年2月
 123
45678910
11121314151617
18192021222324
25262728  

注目情報

最新記事

第69回「見えないものを見えるようにする」野々山貴行准教授

第69回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

第68回「表面・界面の科学からバイオセラミックスの未来に輝きを」多賀谷 基博 准教授

第68回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

配座制御が鍵!(–)-Rauvomine Bの全合成

シクロプロパン環をもつインドールアルカロイド(–)-rauvomine Bの初の全合成が達成された。…

岩田浩明 Hiroaki IWATA

岩田浩明(いわたひろあき)は、日本のデータサイエンティスト・計算科学者である。鳥取大学医学部 教授。…

人羅勇気 Yuki HITORA

人羅 勇気(ひとら ゆうき, 1987年5月3日-)は、日本の化学者である。熊本大学大学院生命科学研…

榊原康文 Yasubumi SAKAKIBARA

榊原康文(Yasubumi Sakakibara, 1960年5月13日-)は、日本の生命情報科学者…

遺伝子の転写調節因子LmrRの疎水性ポケットを利用した有機触媒反応

こんにちは,熊葛です!研究の面白さの一つに,異なる分野の研究結果を利用することが挙げられるかと思いま…

新規チオ酢酸カリウム基を利用した高速エポキシ開環反応のはなし

Tshozoです。最近エポキシ系材料を使うことになり色々勉強しておりましたところ、これまで関連記…

第52回ケムステVシンポ「生体関連セラミックス科学が切り拓く次世代型材料機能」を開催します!

続けてのケムステVシンポの会告です! 本記事は、第52回ケムステVシンポジウムの開催告知です!…

2024年ノーベル化学賞ケムステ予想当選者発表!

大変長らくお待たせしました! 2024年ノーベル化学賞予想の結果発表です!2…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP