[スポンサーリンク]

化学者のつぶやき

超強塩基触媒によるスチレンのアルコール付加反応

超強塩基を触媒とするβフェネチルエーテルの合成法が開発された。アルコールが逆マルコフ二コフ型でアリールアルケンに直接付加することでβフェネチルエーテルを効率よく合成できる。

アルコールのアリールアルケンへの逆マルコフニコフ型付加反応

 βフェネチルエーテル骨格は医農薬や天然物に頻出する重要骨格である。ヒドロホウ素化、酸化、そして生じる水酸基の置換反応が信頼性の高いβフェネチルエーテル合成法として用いられているが、三工程を要する。

より直截的な手法であるアリールアルケンの逆マルコフニコフ型アルコール付加反応の開発が望まれており、本反応を実現する触媒の開発が求められてきた。これまでにNicewiczらが2012年に光酸化還元触媒を用いるメタノールのトランスアネトールへの付加反応を報告しているが、触媒的手法はこの一例に限られる(1A)1

 一方で、ブレンステッド塩基触媒によるアリールアルケンへのアルコールの付加は、理論上、逆マルコフニコフ型で進行することが予想できるため、これまでにアルカリアルコキシドなどを用いていくつか研究されてきた。

しかし、アリールアルケンの求電子性が低いため、ブレンステッド塩基を用いた逆マルコフニコフ型アルコール付加反応は、ピリジルアルケンなどの電子不足アリールアルケンしか適用できない2。さらに、強塩基を用いた際、アリールアルケンのアニオン重合が併発しやすいため、これを抑制する触媒の開発が重要となる。

 今回、コロラド州立大学のBandar助教授らは、有機超強塩基トリアミノイミノホスホランP4t-Buを触媒として用いることで、アリールアルケンの逆マルコフニコフ型アルコール付加反応の開発に成功したので紹介する(1B)

図1. アリールアルケンの触媒的逆マルコフニコフ型アルコール付加反応

 

Superbase-Catalyzed anti-Markovnikov Alcohol Addition Reactions to Aryl Alkenes

Luo, C.; Bandar, J. S.J. Am. Chem. Soc.2018, 140, 3547. DOI:10.1021/jacs.8b00766

論文著者の紹介


研究者:Jeffrey S. Bandar
研究者の経歴:
2009 BSc., Saint. John’s University, USA (Associate Prof.Thomas N. Jones)
2014 Ph.D., Columbia University, USA (Prof. Tristan H. Lambert)
2014-2017 Posdoc, Massachusetts Institute of Technology, USA (Prof. Stephen L. Buchwald)
2017- Assistant Professor, Colorado State University
研究内容:触媒反応の開発

論文の概要

 今回用いたP4t-BuSchwesingerらによって開発された超強塩基である3

これまでに根東らによってアリールアセチレンの逆マルコフニコフ型アルコール付加反応に有効であることが示されていた4。トリアミノイミノホスホランP4t-Buは電荷をもたない塩基であり、その塩基性はLDAに匹敵する。また、アルコールの脱プロトンにより生じるP4t-Buの共役酸H–P4t-Bu500 Åの大きさ(アルカリ金属カチオンの25–250)の安定なカチオンであるため、反応性の高い“裸”のアルコキシドを生じることができる(2A)

さらに、無機塩基とは異なり、脱プロトン後に生じる共役酸H–P4t-Buにより、アルコキシドがスチレンに付加して生じるカルバニオン種を迅速にプロトン化できるため、望まぬアニオン重合を抑制できる(2B)。以上のような性質を活かし、今回BandarらはP4t-Buを用いることで、これまでのブレンステッド触媒を用いる手法で問題であった、スチレンのアルコキシドへの低反応性と、アニオン重合の併発という二つの問題を解決し、P4t-Buを用いて目的のアリールアルケンの逆マルコフニコフ型アルコール付加反応を進行させることに成功した。

 本反応の基質一般性に関しては、電子中性あるいは電子不足な芳香環を有するアリールアルケンが適用できる(2C)

一方で、電子豊富なアリールアルケンでは反応はほとんど進行しない。ヘテロ芳香族からなるアリールアルケンでも収率よく対応するエーテル体が生成した。また、アリールアルケンのβ位に置換基があっても対応する1が得られる(1E)

また、アルコールの適用範囲も広く多くの一級アルコールが適用できる(2D)。二級、三級アルコールと立体障害が大きくなるにつれ収率は低下する(1F–1J)。ジオールやアミノアルコールを用いた場合、一級アルコール選択的に反応が進行する(1K–1M)

 以上のようにβフェネチルエーテルの簡便な合成法が開発された。今後の展望として、詳しい機構が解明され、さらなる基質一般性の獲得に期待したい。

図2. P4t-Buの性質(A)、推定反応機構(B)と基質適用範囲(C, D)

 

参考文献

  1. Hamilton, D. S.; Nicewicz, D. A. J. Am. Chem. Soc.2012, 134, 18577. DOI:10.1021/ja309635w
  2. (a) Kharkar, P. S.; Batman, A. M.; Zhen, J.; Beardsley, P. M.; Reith, M. E. A.; Dutta, A. K. ChemMedChem 2009, 4, 1075. DOI:1002/c mdc.200900085 (b) Otsuka, M.; Endo, K.; Shibata, T. Organometallics, 2011, 30, 3683.DOI: 10.1021/om200268v
  3. Schwesinger, R.; Schlemper, H. Angew. Chem., Int. Ed.1987, 26, 1167.DOI: 10.1002/anie.198711671
  4. Imahori, T.; Hori, C.; Kondo, Y. Adv. Synth. Catal.2004, 346, 1090.DOI: 10.1002/adsc.200404076
The following two tabs change content below.
山口 研究室
早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 有機ナノチューブの新規合成法の開発
  2. 光触媒反応用途の青色LED光源を比較してみた
  3. 文具に凝るといふことを化学者もしてみむとてするなり⑨:トラックボ…
  4. 日本のお家芸、糖転移酵素を触媒とするための簡便糖ドナー合成法
  5. ストックホルム国際青年科学セミナー・2018年の参加学生を募集開…
  6. スローン賞って知っていますか?
  7. ふにふにふわふわ☆マシュマロゲルがスゴい!?
  8. γ-チューブリン特異的阻害剤の創製

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 新日石、地下資源開発に3年で2000億円投資
  2. 【書籍】アリエナイ化学実験の世界へ―『Mad Science―炎と煙と轟音の科学実験54』
  3. ダンハイザー環形成反応 Danheiser Annulation
  4. 【太陽HD】世界初!セルロースナノファイバー複合電子材料の研究
  5. 「えれめんトランプ2.0」が発売された
  6. ハッピー・ハロウィーン・リアクション
  7. 水素結合の発見者は誰?
  8. 2013年就活体験記(2)
  9. 巨大ポリエーテル天然物「ギムノシン-A」の全合成
  10. スピノシン Spinosyn

関連商品

注目情報

注目情報

最新記事

化合物の秤量

数mgを量り取るといったことは多くの化学系の研究者の皆様が日常的にされていることかと思います。しかし…

小スケールの反応で気をつけるべきこと

前回はスケールアップについて書いたので、今回は小スケールの反応での注意すべきことについてつらつらと書…

尿から薬?! ~意外な由来の医薬品~ その1

Tshozoです。今まで尿に焦点をあてた記事を数回書いてきたのですが、それを調べるうちに「1…

OPRD誌を日本プロセス化学会がジャック?

OPRD(Organic Process Research & Development)はJ…

ワークアップの悪夢

みなさま、4月も半分すぎ、新入生がラボに入ってきていると思います。そんな頃によく目にするのが、エマル…

単一分子の電界発光の機構を解明

第194回のスポットライトリサーチは、理化学研究所Kim表面界面科学研究室で研究員を務められていた、…

Chem-Station Twitter

PAGE TOP