[スポンサーリンク]

化学者のつぶやき

Dead Endを回避せよ!「全合成・極限からの一手」⑨ (解答編)

[スポンサーリンク]

このコーナーでは、直面した困難を克服するべく編み出された、全合成における優れた問題解決とその発想をクイズ形式で紹介してみたいと思います。

第9回は、Andreas Pfaltzおよび鈴木啓介らによるMacrocidin Aの全合成が題材でした(問題はこちら)。今回はその解答編になります。

“Total Synthesis and Absolute Configuration of Macrocidin A, a Cyclophane Tetramic Acid Natural Product”
Yoshinari, T.; Ohmori, K.; Schrems, M. G.; Pfaltz, A.; Suzuki, K. Angew. Chem. Int. Ed. 2010, 49, 881. DOI: 10.1002/anie.200906362

一般論として環化反応が進行しない原因は、反応性が足りないか、他の副反応が速いか、配座制限の問題で進行しないか、のいずれかです。今回のケースでは類似のDieckmann環化が既知であること、シクロファン骨格という特殊な大環状骨格に反応点が組み込まれていることなどから、おそらくは配座制限の問題ではないか?と推測されます。

原料の結晶構造解析[1]を行なってみたところ、二つの反応点(活性メチレン炭素とエステルカルボニル炭素)が遠く離れた、s-trans配座を取っていることが分かりました。このままでは反応点が近づけず、環化が進行しないわけです。何とかして両末端を近づけてやらねば成りません。そこでアミド窒素の保護による、s-cis配座への誘導が検討されました。

置換アミドには配座異性体が存在します。2級アミドであればほとんどの場合、エネルギー的に安定なs-trans配座を取っています(立体反発が小さいため)。しかしながら、3級アミドになると、両配座における立体反発の程度に差がなくなってきます(たとえばN-アシルプロリンの場合、およそ3~4 kJ/mol程度しかそのエネルギー差が無いと言われています)。このため3級アミドは2級アミドに比べて、s-cis配座を取りやすくなるのです。

この戦略が達成されさえすれば、理屈の上ではどんな保護基でも良いことになります。ここではp-アジドベンジル(PAB)基[2]という見慣れない保護基がチョイスされています。問題文にもあるように、①アジド→アミン(orイミノホスホラン)への還元 ②酸化条件 の2工程で除去しなくてはならず、第一選択とはならない保護基です。

今回の原料は酸に弱いエポキシド、電子豊富な芳香環、反応性の高いテトラミン酸部位などを含んでいるため、Bn基やPMB基を除去する典型条件(酸化 or 強酸性)には耐えなかったようです。その結果、マイルドな酸化で除去できるPAB基のみ有効だったという結論です。

PMB基とPAB基の選択的除去[2]

さて、今回の問題はいかがでしたか?皆さんは無事、「次の一手」に辿りつけましたでしょうか?

関連文献

  1. CCDC 756980
  2. Fukase, K.; Hashida, M.; Kusumoto, S. Tetrahedron Lett. 1991, 32, 3557. doi:10.1016/0040-4039(91)80832-Q

関連書籍

外部リンク

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 化学にインスパイアされたジュエリー
  2. 卒論・修論にむけて〜わかりやすく伝わる文章を書こう!〜
  3. 結晶スポンジ法から始まったミヤコシンの立体化学問題は意外な結末
  4. 力を加えると変色するプラスチック
  5. SciFinder Future Leaders in Chem…
  6. 速報! ノーベル物理学賞2014日本人トリプル受賞!!
  7. フラーレンの中には核反応を早くする不思議空間がある
  8. 銀カルベノイドの金属特性を活用したフェノール類の不斉脱芳香族化反…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 住友化学、硫安フリーのラクタム製法でものづくり大賞
  2. 不斉ディールス・アルダー反応 Asymmetric Diels-Alder Reaction
  3. 未解明のテルペン類の生合成経路を理論的に明らかに
  4. この輪っか状の分子パないの!
  5. シリカゲル担持4-ヒドロキシ-TEMPOを用いたアルコール類の空気酸化反応
  6. グレッグ・フー Gregory C. Fu
  7. “関節技”でグリコシル化を極める!
  8. エドマン分解 Edman Degradation
  9. 高分子を”見る” その1
  10. 教養としての化学入門: 未来の課題を解決するために

関連商品

注目情報

注目情報

最新記事

複雑にインターロックした自己集合体の形成機構の解明

第199回のスポットライトリサーチは、東京大学総合文化研究科(平岡研究室)博士課程・立石友紀さんにお…

小型質量分析装置expression® CMSを試してみた

学生が増えすぎて(うれしい悲鳴ですが)、機器を購入する余裕などこれっぽっちもない代表です。さ…

有機合成化学協会誌2019年6月号:不斉ヘテロDiels-Alder反応・合金ナノ粒子触媒・グラフェンナノリボン・触媒的光延反応・フェイズ・バニシング

有機合成化学協会が発行する有機合成化学協会誌、2019年6月号がオンライン公開されました。梅…

東大キャリア教室で1年生に伝えている大切なこと: 変化を生きる13の流儀

概要不確実な時代を生き抜くキャリアを創るには? 各界で活躍する東大OB・OGが、学生生活や就…

可視光光触媒でツルツルのベンゼン環をアミノ化する

単純なアルキルアミンが利用できる芳香族C–Hアミノ化反応が開発された。基質適用範囲が広く天然物などの…

【21卒】太陽ホールディングスインターンシップ

太陽HDでの研究職を体感してみませんか?私たちの研究活動についてより近くで体験していただく場とし…

Chem-Station Twitter

PAGE TOP