[スポンサーリンク]

G

グリニャール反応 Grignard Reaction

[スポンサーリンク]

概要

  • 有機金属剤のなかでは最もポピュラー。ほとんどのカルボニル化合物にアルキル基を導入し、対応するアルコールに変換できる。
  • 塩基性が強いため、エノール化しやすい基質の場合には収率が悪い。β水素を持つアルキル基の導入では、ケトンのヒドリド還元生成物が副生する。
  • ハロゲン化アルキルとカルボニル化合物の混合溶液にマグネシウムを反応させて、アルコールを一段階で与える反応はBarbier反応と呼ばれる。この場合、使われる金属はマグネシウムに限らず、リチウム・亜鉛・サマリウムなど多くの金属が検討されている。
  • 反応基質の違いにより異なる名前で呼ばれることがある。反応基質がβ-アミノ-α,β-不飽和ケトンの場合はBerary反応、オルトエステルの場合はBodoroux-Chichibabinアルデヒド合成反応、ホルミルアミドの場合はBouveaultアルデヒド合成反応などとも呼ばれる。
  • 本反応の開発者であるV.Grignard1912年のノーベル化学賞を受賞している。

基本文献

  • Grignard, V. Compt. Rend. 1900, 130, 1322.

Primitive Review:

  • Shirley, D. A. Org. React. 1954, 8, 28.
  • Huryn, D. M. Comprehensive Organic Synthesis 19911, 49.

Recent Progress & Reviews:

 

開発の歴史

カルボニル化合物の付加反応剤としてはジアルキル亜鉛の方が歴史は古い。しかし反応性の低さや発火性など問題があった。エーテル溶媒中でジアルキル亜鉛を調整するとエーテルが配位したジアルキル亜鉛が得られる。一方で、ハロゲン化アルキルとマグネシウムをエーテル溶媒中で反応させると非常に再現性良くかつ反応性の高いアルキル化剤が得られた。これが1900年フランスの化学者ヴィクトル・グリニャールによって発見され、現在でもちいられているグリニャール試薬および反応である。

2014-12-11_14-23-42

François Auguste Victor Grignard

 

反応機構

以下のようなSchlenk平衡を介し、溶液中では様々な複合体として存在する。
grignard_3.gif
マグネシウムがルイス酸様に働き、アルキル基の求核付加機構(Polar Mechanism)で進行するのが一般的である。ベンゾフェノンのように還元されやすい基質や、t-Buグリニャール試薬のようにかさ高い試薬を用いたときは、特別に一電子移動機構(SET Mechanism)で進行するとされる。
grignard_2.gif

反応例

  • 無水塩化セリウム存在下で反応させると、エノール化、還元、1,4-付加などの異常反応が抑えられ、正常付加物であるアルコールが収率よく生成する。[1]
    grignard_9.gif

 

  • i-Pr基をGrignard試薬で導入しようとすると、β-Hydride還元が優先する。(イソプロペニルGrignard試薬付加→水素添加という代替プロセスが有効)逆に、Bulkyなケトンを還元したいときにi-PrMgX、t-BuMgXを用いるとヒドリド還元できる

grignard_11.gif

 

  • 有機マグネシウムアート錯体の調製。 通常のGrignard試薬より、官能基受容性などの面で優れている。[2]grignard_8.gif

 

  • ニトリルとは反応しにくいため、高温が必要となる。反応によりイミンのマグネシウム塩が出来るが、これはGrignard試薬に対して不活性であるため、この段階で反応は停止する。これは容易に加水分解されてケトンを生成する。grignard_5.gif

 

  • キラルなGrignard試薬を合成する手順も開発されている。[3]

 

  •  i-PrMgXを用いるハロゲン-金属交換法は、官能基化Grignard試薬を低温調製できる有用な方法である。LiClを添加することで金属交換は促進される(Turbo Grignard試薬と呼ばれる)。[4]それまでエステルやニトリルなどを有するグリニャール試薬は調製できないとされてきたが、本法を用いれば調製可能である。リチウムイオンの存在によってGrgnard試薬の会合状態を変化させることができ、RMgXLiClのようにリチウムが結合することによりMgがより負電荷をおび、求核性が向上するという説もある。
  • grignard_7.gifごく最近、石原らによって触媒量の塩化亜鉛を添加する条件が開発された。これによって異常反応が抑制され、カルボニル基への求核付加が効率よく進行する。活性種は系中生成してくるトリアルキル亜鉛アート錯体だと推測されている。[5]

grignard_6.gif

 

  • 還元によって用時調製された活性なRiekeマグネシウムは、不活性なアルキルハライドとも反応し、Grignard試薬を与える。[7] grignard_10.gif

実験手順

 

実験のコツ・テクニック

  • 簡単なGrignard試薬は市販されている。冷蔵保存したり、濃度が濃いと結晶化・沈殿しやすいので、適当な濃度で保存するか、もしくは沈殿を完全に溶解させてから使うようにすること。
  • マグネシウム表面が不働体化しているとGrignard試薬が生成しにくくなる。表面活性化法には希塩酸洗浄、もしくはGlovebox内でのグラインド(小スケールの場合に特に有効)が効果的である。
  • ヨウ素orジブロモエタンorジヨードエタンをMgと一緒に極少量加えておくと、Grignard試薬の生成が促進されることが多い。Grignard試薬を生成しにくい基質の場合はジムロートを備え加熱するのが常である。発熱反応であるうえ、いったん生成が始まると自触媒的に反応が進行するので、暴走にはくれぐれも注意。
  • 通常、THFもしくはエーテルを溶媒として調製される。配位性溶媒はGrignard試薬を安定化して、その生成を促すためである。特定のケースに限りエーテルのみが用いられる(Mg+MeIなどはTHF中で調製しようとするとWurtzホモカップリング体のみが得られる)。
  • アリルGrignard試薬など、 ホモカップリングしやすいGrignard試薬の調製には、長時間滴下、厳密な低温度制御など技術と根気が必要になる。
  • 滴定法は1,10-フェナントロリン・無水メタノール溶液にGrignard試薬を加えていくやり方が簡便。メントールなど安価な固体のアルコールも使いやすい。溶液が赤紫色に着色すれば終了。フェナントロリン-マグネシウム錯体生成がその原理。[6]
1,10-phenとメントールのTHF溶液にGrignard試薬を加える。赤紫色が消えなったところが終点

1,10-phenとメントールのTHF溶液にGrignard試薬を加える。赤紫色が消えなったところが終点

参考文献

  1. (a) Imamoto, T. et al. J. Am. Chem. Soc. 1989111, 4392. DOI: 10.1021/ja00194a037 (b) Takeda, N.; Imamoto, T. Org. Synth. 199876, 228.  DOI: 10.15227/orgsyn.076.0228
  2. Ohshima, K. et.al Angew. Chem. Int. Ed. 200039, 2481. [abstract]
  3. Hoffmann, R. W. et al. Angew. Chem. Int. Ed. 200039, 3073. [abstract]
  4. Knochel, P. et al. Angew. Chem.Int. Ed. 200443, 3333. DOI: 10.1002/anie.200454084
  5. Ishihara, K. et al. J. Am. Chem. Soc. 2006128, 9998. DOI: 10.1021/ja0628405
  6. (a) Lin, H.-S.; Paquette, L. A. Synth. Commun.1994, 24, 2503. DOI: 10.1080/00397919408010560 (b) Walson, S. C.; Eastman, J. F. J. Organomet. Chem. 19679, 165. DOI: 10.1016/S0022-328X(00)92418-5
  7. (a) Rieke, R. D.; Bales, S. E.; Hudnall, P. M.; Burns, T. P.; Poindexter, G. S. Org. Synth. Coll. Vol. VI, 1988, 845. (b) Sell, M. S.; Klein, W. R.; Rieke, R. D. J. Org. Chem. 1995, 60, 1077. DOI: 10.1021/jo00109a048

関連反応

 

関連動画

関連書籍

 

外部リンク

関連記事

  1. エヴァンスアルドール反応 Evans Aldol Reactio…
  2. ウルフ・デッツ反応 Wulff-Dotz Reaction
  3. アフマトヴィッチ反応 Achmatowicz Reaction
  4. 二酸化セレン Selenium Dioxide
  5. フリッチュ・ブッテンバーグ・ウィーチェル転位 Fritsch-B…
  6. 超音波有機合成 Sonication in Organic Sy…
  7. ピナコール転位 Pinacol Rearrangement
  8. 福山インドール合成 Fukuyama Indole Synthe…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 有機合成化学協会誌2023年8月号:フェノール-カルベン不斉配位子・カチオン性ヨウ素反応剤・水・アルコール求核剤・核酸反応場・光応答型不斉触媒
  2. 産総研 地質標本館
  3. 下嶋 敦 Shimojima Atsushi
  4. 武田薬品、週1回投与の骨粗鬆症治療薬「ベネット錠17.5mg」を発売
  5. 研究費・奨学金の獲得とプロポーザルについて学ぼう!
  6. 材料費格安、光触媒型の太陽電池 富大教授が開発、シリコン型から脱却
  7. コーヒーブレイク
  8. シラフィン silaffin
  9. 独メルク、米シグマアルドリッチを買収
  10. アイルランドに行ってきた②

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

超塩基に匹敵する強塩基性をもつチタン酸バリウム酸窒化物の合成

第604回のスポットライトリサーチは、東京工業大学 元素戦略MDX研究センターの宮﨑 雅義(みやざぎ…

ニキビ治療薬の成分が発がん性物質に変化?検査会社が注意喚起

2024年3月7日、ブルームバーグ・ニュース及び Yahoo! ニュースに以下の…

ガラスのように透明で曲げられるエアロゲル ―高性能透明断熱材として期待―

第603回のスポットライトリサーチは、ティエムファクトリ株式会社の上岡 良太(うえおか りょうた)さ…

有機合成化学協会誌2024年3月号:遠隔位電子チューニング・含窒素芳香族化合物・ジベンゾクリセン・ロタキサン・近赤外光材料

有機合成化学協会が発行する有機合成化学協会誌、2024年3月号がオンライン公開されています。…

日本化学会 第104春季年会 付設展示会ケムステキャンペーン Part3

日本化学会年会の付設展示会に出展する企業とのコラボです。第一弾・第二弾につづいて…

ペロブスカイト太陽電池の学理と技術: カーボンニュートラルを担う国産グリーンテクノロジー (CSJカレントレビュー: 48)

(さらに…)…

日本化学会 第104春季年会 付設展示会ケムステキャンペーン Part2

前回の第一弾に続いて第二弾。日本化学会年会の付設展示会に出展する企業との…

CIPイノベーション共創プログラム「世界に躍進する創薬・バイオベンチャーの新たな戦略」

日本化学会第104春季年会(2024)で開催されるシンポジウムの一つに、CIPセッション「世界に躍進…

日本化学会 第104春季年会 付設展示会ケムステキャンペーン Part1

今年も始まりました日本化学会春季年会。対面で復活して2年めですね。今年は…

マテリアルズ・インフォマティクスの推進成功事例 -なぜあの企業は最短でMI推進を成功させたのか?-

開催日:2024/03/21 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP