[スポンサーリンク]

G

グリニャール反応 Grignard Reaction

[スポンサーリンク]

概要

  • 有機金属剤のなかでは最もポピュラー。ほとんどのカルボニル化合物にアルキル基を導入し、対応するアルコールに変換できる。
  • 塩基性が強いため、エノール化しやすい基質の場合には収率が悪い。β水素を持つアルキル基の導入では、ケトンのヒドリド還元生成物が副生する。
  • ハロゲン化アルキルとカルボニル化合物の混合溶液にマグネシウムを反応させて、アルコールを一段階で与える反応はBarbier反応と呼ばれる。この場合、使われる金属はマグネシウムに限らず、リチウム・亜鉛・サマリウムなど多くの金属が検討されている。
  • 反応基質の違いにより異なる名前で呼ばれることがある。反応基質がβ-アミノ-α,β-不飽和ケトンの場合はBerary反応、オルトエステルの場合はBodoroux-Chichibabinアルデヒド合成反応、ホルミルアミドの場合はBouveaultアルデヒド合成反応などとも呼ばれる。
  • 本反応の開発者であるV.Grignard1912年のノーベル化学賞を受賞している。

基本文献

  • Grignard, V. Compt. Rend. 1900, 130, 1322.

Primitive Review:

  • Shirley, D. A. Org. React. 1954, 8, 28.
  • Huryn, D. M. Comprehensive Organic Synthesis 19911, 49.

Recent Progress & Reviews:

 

開発の歴史

カルボニル化合物の付加反応剤としてはジアルキル亜鉛の方が歴史は古い。しかし反応性の低さや発火性など問題があった。エーテル溶媒中でジアルキル亜鉛を調整するとエーテルが配位したジアルキル亜鉛が得られる。一方で、ハロゲン化アルキルとマグネシウムをエーテル溶媒中で反応させると非常に再現性良くかつ反応性の高いアルキル化剤が得られた。これが1900年フランスの化学者ヴィクトル・グリニャールによって発見され、現在でもちいられているグリニャール試薬および反応である。

2014-12-11_14-23-42

François Auguste Victor Grignard

 

反応機構

以下のようなSchlenk平衡を介し、溶液中では様々な複合体として存在する。
grignard_3.gif
マグネシウムがルイス酸様に働き、アルキル基の求核付加機構(Polar Mechanism)で進行するのが一般的である。ベンゾフェノンのように還元されやすい基質や、t-Buグリニャール試薬のようにかさ高い試薬を用いたときは、特別に一電子移動機構(SET Mechanism)で進行するとされる。
grignard_2.gif

反応例

  • 無水塩化セリウム存在下で反応させると、エノール化、還元、1,4-付加などの異常反応が抑えられ、正常付加物であるアルコールが収率よく生成する。[1]
    grignard_9.gif

 

  • i-Pr基をGrignard試薬で導入しようとすると、β-Hydride還元が優先する。(イソプロペニルGrignard試薬付加→水素添加という代替プロセスが有効)逆に、Bulkyなケトンを還元したいときにi-PrMgX、t-BuMgXを用いるとヒドリド還元できる

grignard_11.gif

 

  • 有機マグネシウムアート錯体の調製。 通常のGrignard試薬より、官能基受容性などの面で優れている。[2]grignard_8.gif

 

  • ニトリルとは反応しにくいため、高温が必要となる。反応によりイミンのマグネシウム塩が出来るが、これはGrignard試薬に対して不活性であるため、この段階で反応は停止する。これは容易に加水分解されてケトンを生成する。grignard_5.gif

 

  • キラルなGrignard試薬を合成する手順も開発されている。[3]

 

  •  i-PrMgXを用いるハロゲン-金属交換法は、官能基化Grignard試薬を低温調製できる有用な方法である。LiClを添加することで金属交換は促進される(Turbo Grignard試薬と呼ばれる)。[4]それまでエステルやニトリルなどを有するグリニャール試薬は調製できないとされてきたが、本法を用いれば調製可能である。リチウムイオンの存在によってGrgnard試薬の会合状態を変化させることができ、RMgXLiClのようにリチウムが結合することによりMgがより負電荷をおび、求核性が向上するという説もある。
  • grignard_7.gifごく最近、石原らによって触媒量の塩化亜鉛を添加する条件が開発された。これによって異常反応が抑制され、カルボニル基への求核付加が効率よく進行する。活性種は系中生成してくるトリアルキル亜鉛アート錯体だと推測されている。[5]

grignard_6.gif

 

  • 還元によって用時調製された活性なRiekeマグネシウムは、不活性なアルキルハライドとも反応し、Grignard試薬を与える。[7] grignard_10.gif

実験手順

 

実験のコツ・テクニック

  • 簡単なGrignard試薬は市販されている。冷蔵保存したり、濃度が濃いと結晶化・沈殿しやすいので、適当な濃度で保存するか、もしくは沈殿を完全に溶解させてから使うようにすること。
  • マグネシウム表面が不働体化しているとGrignard試薬が生成しにくくなる。表面活性化法には希塩酸洗浄、もしくはGlovebox内でのグラインド(小スケールの場合に特に有効)が効果的である。
  • ヨウ素orジブロモエタンorジヨードエタンをMgと一緒に極少量加えておくと、Grignard試薬の生成が促進されることが多い。Grignard試薬を生成しにくい基質の場合はジムロートを備え加熱するのが常である。発熱反応であるうえ、いったん生成が始まると自触媒的に反応が進行するので、暴走にはくれぐれも注意。
  • 通常、THFもしくはエーテルを溶媒として調製される。配位性溶媒はGrignard試薬を安定化して、その生成を促すためである。特定のケースに限りエーテルのみが用いられる(Mg+MeIなどはTHF中で調製しようとするとWurtzホモカップリング体のみが得られる)。
  • アリルGrignard試薬など、 ホモカップリングしやすいGrignard試薬の調製には、長時間滴下、厳密な低温度制御など技術と根気が必要になる。
  • 滴定法は1,10-フェナントロリン・無水メタノール溶液にGrignard試薬を加えていくやり方が簡便。メントールなど安価な固体のアルコールも使いやすい。溶液が赤紫色に着色すれば終了。フェナントロリン-マグネシウム錯体生成がその原理。[6]
1,10-phenとメントールのTHF溶液にGrignard試薬を加える。赤紫色が消えなったところが終点

1,10-phenとメントールのTHF溶液にGrignard試薬を加える。赤紫色が消えなったところが終点

参考文献

  1. (a) Imamoto, T. et al. J. Am. Chem. Soc. 1989111, 4392. DOI: 10.1021/ja00194a037 (b) Takeda, N.; Imamoto, T. Org. Synth. 199876, 228.  DOI: 10.15227/orgsyn.076.0228
  2. Ohshima, K. et.al Angew. Chem. Int. Ed. 200039, 2481. [abstract]
  3. Hoffmann, R. W. et al. Angew. Chem. Int. Ed. 200039, 3073. [abstract]
  4. Knochel, P. et al. Angew. Chem.Int. Ed. 200443, 3333. DOI: 10.1002/anie.200454084
  5. Ishihara, K. et al. J. Am. Chem. Soc. 2006128, 9998. DOI: 10.1021/ja0628405
  6. (a) Lin, H.-S.; Paquette, L. A. Synth. Commun.1994, 24, 2503. DOI: 10.1080/00397919408010560 (b) Walson, S. C.; Eastman, J. F. J. Organomet. Chem. 19679, 165. DOI: 10.1016/S0022-328X(00)92418-5
  7. (a) Rieke, R. D.; Bales, S. E.; Hudnall, P. M.; Burns, T. P.; Poindexter, G. S. Org. Synth. Coll. Vol. VI, 1988, 845. (b) Sell, M. S.; Klein, W. R.; Rieke, R. D. J. Org. Chem. 1995, 60, 1077. DOI: 10.1021/jo00109a048

関連反応

 

関連動画

関連書籍

知っておきたい有機反応100 第2版

知っておきたい有機反応100 第2版

¥2,970(as of 12/05 09:05)
Amazon product information
Handbook of Grignard Reagents (Chemical Industries)

Handbook of Grignard Reagents (Chemical Industries)

Silverman, Gary S., Rakita, Philip E.
¥95,918(as of 12/05 10:59)
Amazon product information

 

外部リンク

関連記事

  1. ピナコールカップリング Pinacol Coupling
  2. 歪み促進型アジド-アルキン付加環化 SPAAC Reaction…
  3. エドマン分解 Edman Degradation
  4. リーベスカインド・スローグル クロスカップリング Liebesk…
  5. NHPI触媒によるC-H酸化 C-H Oxidation wit…
  6. ヒドロホルミル化反応 Hydroformylation
  7. バルビエ・ウィーランド分解 Barbier-Wieland De…
  8. コープ転位 Cope Rearrangement

注目情報

ピックアップ記事

  1. L・スターンバック氏死去 精神安定剤開発者
  2. サイアメントの作ったドラマ「彼岸島」オープニングがすごい!
  3. 危険物取扱者:記事まとめ
  4. 【書籍】合成化学の新潮流を学ぶ:不活性結合・不活性分子の活性化
  5. マイクロ空間内に均一な原子層を形成させる新技術
  6. 有機合成に活躍する器具5選|第1回「有機合成実験テクニック」(リケラボコラボレーション)
  7. 白い有機ナノチューブの大量合成に成功
  8. カイコが紡ぐクモの糸
  9. 自己組織化ねじれ双極マイクロ球体から円偏光発光の角度異方性に切り込む
  10. 混ぜるだけで簡単に作製でき、傷が素早く自己修復する透明防曇皮膜

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP