[スポンサーリンク]

化学者のつぶやき

その置換基、パラジウムと交換しませんか?

[スポンサーリンク]

パラジウム触媒を用いたシクロペンテン誘導体の1,4-不斉フルオロアリール化反応が報告された。反応の過程でパラジウムの1,2-ジオトロピー転位の進行が示唆されている。

予期せぬジオトロピー転位の発見

ジオトロピー転位は、分子内の2つのσ結合が同時に組み替わる転位反応であり、ペリ環状反応の一種とaして、1972年にReetzによって提唱された(図 1A)[1]。ジオトロピー転位の歴史は古く、1906年には加熱によってジブロモコレスタンの隣り合う2つの臭素の立体が入れ替わる現象が報告されている [2a, 2b]。また、1990年代には2位にアルキル金属(M = Cu, Al, Zr)をもつフラン誘導体のC(sp2)–M結合上の置換基のジオトロピー転位を用いた、三置換オレフィン合成法が報告された[2c, 2d]。ジオトロピー転位を利用することで、ユニークな分子変換法が確立できる[2e]
今回、本論文著者であるZhuらは、すでに報告例のあるパラジウム触媒によるスチレン誘導体の不斉フルオロアリール化をシクロペンテン誘導体に適用した(図 1B and 1C)[3]

その結果、予期せずに1,2-フルオロアリール化でなく1,4-フルオロアリール化が進行した生成物を与えた。この反応を詳しく解析したところ、パラジウムの1,2-ジオトロピー転位が起きているのではないかとの結論に至った。なお、本反応はパラジウムがジオトロピー転位した初めての例である。

図1. (A) ジオトロピー転位 (B) パラジウム触媒を用いた不斉フルオロアリール化 (D) 今回の反応

C–C Bond Activation Enabled by Dyotropic Rearrangement of Pd(IV) Species
Cao, J.; Wu, Hua.; Wang, Q.; Zhu, J. Nat. Chem. 2021, 13, 671–676.
DOI: 10.1038/s41557-021-00698-y

論文著者の紹介

研究者:Jieping Zhu
研究者の経歴:
–1984 B.Sc., Hanzhou Normal University, China
–1987 M.Sc., Lanzhou University, China (Prof. Y.-L. Li)
–1991 Ph.D., Université Paris XI, France (Prof. H.-P. Husson and Prof. J.-C. Quirion)
1991–1992 Postdoc, Texas A&M University, USA (Prof. Sir D. H. R. Barton)
1992–2000 “Chargé de Recherche” at ICSN, CNRS, France
2000–2006 Director of Research, 2nd class, at ICSN CNRS, France
2006–2010 Director of Research, 1st class at ICSN, CNRS, France
2010 Professor, ISIC, EPFL
研究内容:天然物の全合成, 多成分反応, 金属触媒を用いたドミノ型反応, 不斉反応の開発

論文の概要

本反応は、Pd(AdCO2)2/L1触媒、炭酸ナトリウム存在下、シクロペンテン1とアリールボロン酸、Selectfluor®︎を反応させることで1,4-フルオロアリール化体2が得られる(図 2A)。1から中間体3が生成した後、C3位のパラジウムとC4位のアリール基またはアルキル基のジオトロピー転位により中間体4を与える。ジオトロピー転位の際は遷移状態TS1を経由し、アミドの立体反転を伴いつつ互いの結合がアンチの位置関係のまま協奏的に入れ替わる。その後C–F結合の還元的脱離により2が生成する。また、本反応では3のC–F結合が還元的脱離した1,3-フルオロアリール化体2’が副生している。
著者らはジオトロピー転位ではなく、フェノニウム中間体を経由して2が生成する可能性について考察した(図2B)。3からパラジウムが脱離してフェノニウム5となった場合、立体および電子的要因から、フッ化物イオンはC3位優先的に求核攻撃するため、主生成物は2’になると予想される。しかし、実際は予想と異なり2が主生成物であるため、5を経由する可能性は低い。
次に、著者らはジオトロピー転位の際のパラジウムの価数を調査した(図 2C)。まず、著者らはPd(OAc)2L2存在下、1とアリールボロン酸を反応させてパラジウム(II)錯体(±)-6を合成した。二価の状態でジオトロピー転位が起こるか確かめるため、炭酸ナトリウム存在下、(±)-6を室温で撹拌した。しかし(±)-6の部分的な分解が確認された。また、一電子酸化剤により三価のパラジウムを生成させたところ、β-水素脱離が起こり、シクロペンテン7が得られた。一方で(±)-6にSelectfluor®︎と炭酸ナトリウムを作用させることでフルオロアリール化体(±)-2と(±)-2’をそれぞれ中程度の収率で与えた。この際、中間体であるフッ化パラジウム(IV)錯体の存在は高分解能質量分析で確認している。これらの結果よりジオトロピー転位には、二価、三価ではなく四価のパラジウムの関与が示唆された。

図2. (A)ジオトロピー転位を用いた1,4-不斉フルオロアリール化 (B) フェノニウム中間体の仮定 (C) ジオトロピー転位でのパラジウムの価数

 

以上、ジオトロピー転位を介したシクロペンテンの1,4-フルオロアリール化が報告された。パラジウムが1,2-ジオトロピー転位を起こした初めての例であり、より詳しい機構解明が期待される。

参考文献

  1. (a) Reetz, M. T. Dyotropic Rearrangements, A New Class of Orbital-Symmetry Controlled Reactions. Type I. Angew. Chem., Int. Ed. 1972, 11, 129–130. DOI: 10.1002/anie.197201291 (b) Reetz, M. T. Dyotropic Rearrangements, A New Class of Orbital-Symmetry Controlled Reactions. Type II. Angew. Chem., Int. Ed. 1972, 11, 130–131. DOI: 10.1002/anie.197201301
  2. (a) Mauthner, J. Neue Beiträge zur Kenntnis des Cholesterins. Monatsh. Chem. 1906, 27, 421–431. DOI: 10.1007/BF01527178 (b) Grob, C. A.; Winstein, S. Mechanismus der Mutarotation von 5,6-Dibromcholestan. Helv. Chim. Acta. 1952, 99, 782–802. DOI: 10.1002/hlca.19520350315 (c) Kocieński, P.; Barber, C. Synthetic Applications of Metallate Rearrangements. Pure Appl. Chem. 1990, 62, 1933–1940. DOI: 10.1351/pac199062101933 (d) Erker, G.; Petrenz, R. Chalcogenametallacyclohexadienes by Thermally Induced Migratory Ring Enlargement of Furyl- and Thienylzirconocene Complexes. Organometallics 1992, 11, 1646. DOI: 10.1021/om00040a040 (e) Fernández, I.; Cossío, F. P.; Sierra, M. A. Dyotropic Reactions: Mechanisms and Synthetic Applications. Chem. Rev. 2009, 109, 6687–6711. DOI: 10.1021/cr900209c
  3. Talbot, E. P. A.; Fernandes, T. de A.; Mckenna, J. M.; Toste, F. D. Asymmetric Palladium-Catalyzed Directed Intermolecular Fluoroarylation of Styrenes. J. Am. Chem. Soc. 2014, 136, 4101–4104. DOI: 10.1021/ja412881j
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 芳香環交換反応を利用したスルフィド合成法の開発: 悪臭問題に解決…
  2. ルイス酸性を持つアニオン!?遷移金属触媒の新たなカウンターアニオ…
  3. アイディア創出のインセンティブ~KAKENデータベースの利用法
  4. 高分子材料におけるマテリアルズ・インフォマティクスの活用とは?
  5. Whitesides’ Group: Writing…
  6. 円偏光スピンLEDの創製
  7. 化学コミュニケーション賞2023を受賞しました!
  8. アメリカの研究室はこう違う!研究室内の役割分担と運営の仕組み

注目情報

ピックアップ記事

  1. 細胞の中を旅する小分子|第三回(最終回)
  2. スケールアップのためのインフォマティクス活用 -ラボスケールから工場への展開-
  3. 95%以上が水の素材:アクアマテリアル
  4. 4-メルカプト安息香酸:4-Mercaptobenzoic Acid
  5. 第96回日本化学会付設展示会ケムステキャンペーン!Part III
  6. 李昂 Ang Li
  7. 酵素の分子個性のダイバーシティは酵素進化のバロメーターとなる
  8. アルカロイド alkaloid
  9. ポンコツ博士の海外奮闘録XXIII ~博士の危険地帯サバイバル 薬物編~
  10. カーボン系固体酸触媒

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年10月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

細谷 昌弘 Masahiro HOSOYA

細谷 昌弘(ほそや まさひろ, 19xx年xx月xx日-)は、日本の創薬科学者である。塩野義製薬株式…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP