[スポンサーリンク]

化学者のつぶやき

ほぅ、そうか!ハッとするC(sp3)–Hホウ素化

[スポンサーリンク]

遷移金属触媒の不要な単純なアルカンのC(sp3)–Hホウ素化反応が開発された。本触媒系は従来困難であった結合解離エネルギーの大きなC(sp3)H結合の選択的ホウ素化を可能にした。

ラジカル機構でのC(sp3)–Hホウ素化

C–Hホウ素化は、不活性なC–H結合を様々な官能基へ誘導可能なボリル基に直截変換できる強力な手法である。芳香環上やベンジル位、シクロプロパンのC–H結合を対象としたものや、配向基を利用したC–Hホウ素化反応は数多く報告されているが、単純なアルカンのC(sp3)–Hホウ素化反応は未だ報告例が少なく、挑戦的な課題である[1]
以前、本論文の著者であるBristol大学のAggarwalらは、遷移金属触媒が不要かつ可視光駆動の脱炭酸ホウ素化反応を報告した(図1A)[2]。光照射によってN-ヒドロキシフタルイミドエステルより発生した炭素ラジカルが、ジボロンと反応しボロン酸エステルを与える。本ホウ素化反応は、一級、二級および三級全てのカルボン酸誘導体が利用でき、広範な基質適用範囲を有する。
今回、著者らは水素原子移動(Hydrogen Atom Transfer: HAT)によって単純なアルカンから炭素ラジカルを発生させることができれば、先行研究と同様にジボロンとの反応が進行しC(sp3)–Hホウ素化反応が達成できると考えた(図1B)。HAT触媒はC(sp2)–H結合よりも結合解離エネルギー(Bond Dissociation Energy: BDE)の低いC(sp3)–H結合から優先的に水素原子を引き抜くと考えられる。そのため、従来のC–Hホウ素化における難題であった、C(sp2)–H結合存在下でのC(sp3)–H結合選択的ホウ素化が実現できると期待される。以上の仮説のもと、著者らは可視光照射下、N-アルコキシフタルイミドとB-クロロカテコールボランより調製されるHAT触媒を用いることで、C(sp3)–H結合選択的なホウ素化反応を見いだした(図1C)。本反応は芳香族C–H結合存在下でも選択的にC(sp3)–H結合をホウ素化できる。

図 1 (A) Aggarwalらの先行研究(C) HATを利用するホウ素化の作業仮説 (D) 今回の反応

“Metal-Free Photoinduced C(sp3)–H Borylation of Alkanes”
Shu, C.; Noble, A.; Aggarwal, V. K. Nature, 2020, 586, 714–719.
DOI: 10.1038/s41586-020-2831-6

論文著者の紹介

研究者:Varinder K. Aggarwal

論文の概要

本反応はB-クロロカテコールボラン(3)存在下、ビス(カテコラート)ジボロン2を添加し、種々のアルカン1に390 nmの光を照射することで5’が得られる。容易に加水分解される5’はトリエチルアミンとピナコールを添加して5へ変換した (図 2A)。本反応の基質適用範囲は広く、単純なアルカン1aだけでなくハロゲン1bやアミド1cが利用できた。また、芳香族C–H結合やベンジル位C–H結合をもつ1dもC(sp3)–H結合が選択的にホウ素化される。詳細は割愛するが、有機ケイ素化合物を基質とすると、α-シリル位のC(sp3)–H結合選択的にホウ素化が進行した。
本反応の推定反応機構は次の通りである(図 2B)。(i) まず4が励起されアルコキシラジカル6が生成する。(ii) その後、3と反応してアート錯体Iを形成する。このとき63、およびクロロラジカルと7は平衡にある。(iii) その後アルカン1から錯体IへのHATによりアルキルラジカルIIを与え、2と反応することで錯体IIIを得る。(iv) さらに、IIIはClと反応してホウ素化体5およびラジカルアニオンIVを生成する。(v) 最後にIV4の反応によりIが再生する。
次に著者らは本反応の位置選択性について調査した(図 2C)。まず、ボラート7の添加量を変化させた場合、7の添加量が多いほど一級C–H結合が選択的にホウ素化された。また、2の添加量を増加するとホウ素化の位置選択性は低下した。この結果から著者らは、嵩高いアート錯体IがHATに関与するため立体障害の小さなC–H結合の官能基化が優先したと考えた。一方、2の増加による位置選択性の低下は、副生した二級ラジカルが反応しやすくなったためとしている。さらに、ラジカル捕捉実験ではアミド9がわずかしか得られなかったことから、ホウ素化の位置選択性はアルキルラジカルが発生する過程、すなわちHATの過程で発現していることが示唆された。

図2. (A) 基質適用範囲 (B) 推定反応機構 (C) 反応機構解明実験

以上、HAT触媒を用いたC(sp3)–H結合選択的ホウ素化が開発された。過剰量の基質が必要である点や収率に課題が残るものの、医農薬品や有機材料合成への貢献が期待される。

参考文献

  1. (a) Hartwig, J. F. Regioselectivity of the Borylation of Alkanes and Arenes. Chem. Soc. Rev., 2011, 40, 1992–2002. DOI: 10.1039/c0cs00156b (b) Chen, H.; Hartwig, J. F. Catalytic, Regiospecific End-Functionalization of Alkanes: Rhenium-Catalyzed Borylation under Photochemical Conditions. Angew. Chem., Int. Ed. 1999, 38, 3391–3393. DOI: 10.1002/(SICI)1521-3773(19991115)38:22<3391::AID-ANIE3391>3.0.CO;2-N (c) Chen, H.; Schlecht, S.; Semple, T. C.; Hartwig, J. F. Thermal, Catalytic, Regiospecific Functionalization of Alkanes. Science 2000, 287, 1995–1997. DOI: 10.1126/science.287.5460.1995 (d) Murphy, J. M.; Lawrence, J. D.; Kawamura, K.; Incarvito, C.; Hartwig, J. F. Ruthenium-Catalyzed Regiospecific Borylation of Methyl C–H Bonds. J. Am. Chem. Soc. 2006, 128, 13684–13685. DOI: 10.1021/ja064092p (e) Ohmura, T.; Torigoe, T.; Suginome, M. Iridium-catalysed Borylation of Sterically Hindered C(sp3)–H Bonds: Remarkable Rate Acceleration by a Catalytic Amount of Potassium tert-Butoxide. Chem. Commun. 2014, 50, 6333–6336. DOI: 10.1039/c4cc01262c (f) Oeschger, R. et al. Diverse Functionalization of Strong Alkyl C–H Bonds by Undirected Borylation. Science 2020, 368, 736–741. DOI: 10.1126/science.aba6146
  2. Fawcett, A.; Pradeilles, J.; Wang, Y.; Mutsuga, T.; Myers, E. L.; Aggarwal, V. K. Photoinduced Decarboxylative Borylation of Carboxylic Acids. Science 2017, 357, 283–286. DOI: 1126/science.aan3679
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. もう別れよう:化合物を分離・精製する|第5回「有機合成実験テクニ…
  2. 有機合成化学協会誌2021年12月号:人工核酸・Post-com…
  3. Chemistry on Thanksgiving Day
  4. 有機合成化学協会誌2023年8月号:フェノール-カルベン不斉配位…
  5. 電子一つで結合!炭素の新たな結合を実現
  6. 僕がケムステスタッフになった三つの理由
  7. エネルギーの襷を繋ぐオキシムとアルケンの[2+2]光付加環化
  8. SciFinder Future Leaders in Chem…

注目情報

ピックアップ記事

  1. 日本最大の化学物質データーベース無料公開へ
  2. 留学せずに英語をマスターできるかやってみた(5年目)(留学中編)
  3. ケテンジチオアセタール化による一炭素増炭反応
  4. 君には電子のワルツが見えるかな
  5. オペレーションはイノベーションの夢を見るか? その3+まとめ
  6. 植物生合成の謎を解明!?Heteroyohimbine の立体制御
  7. アミドをエステルに変化させる触媒
  8. 2017年の有機ELディスプレイ世界市場は11年比6.6倍の2兆186億円。
  9. 有機アジド(3):アジド導入反応剤
  10. Nature主催の動画コンペ「Science in Shorts」に応募してみました

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年2月
1234567
891011121314
15161718192021
22232425262728

注目情報

最新記事

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP