[スポンサーリンク]

化学者のつぶやき

ほぅ、そうか!ハッとするC(sp3)–Hホウ素化

[スポンサーリンク]

遷移金属触媒の不要な単純なアルカンのC(sp3)–Hホウ素化反応が開発された。本触媒系は従来困難であった結合解離エネルギーの大きなC(sp3)H結合の選択的ホウ素化を可能にした。

ラジカル機構でのC(sp3)–Hホウ素化

C–Hホウ素化は、不活性なC–H結合を様々な官能基へ誘導可能なボリル基に直截変換できる強力な手法である。芳香環上やベンジル位、シクロプロパンのC–H結合を対象としたものや、配向基を利用したC–Hホウ素化反応は数多く報告されているが、単純なアルカンのC(sp3)–Hホウ素化反応は未だ報告例が少なく、挑戦的な課題である[1]
以前、本論文の著者であるBristol大学のAggarwalらは、遷移金属触媒が不要かつ可視光駆動の脱炭酸ホウ素化反応を報告した(図1A)[2]。光照射によってN-ヒドロキシフタルイミドエステルより発生した炭素ラジカルが、ジボロンと反応しボロン酸エステルを与える。本ホウ素化反応は、一級、二級および三級全てのカルボン酸誘導体が利用でき、広範な基質適用範囲を有する。
今回、著者らは水素原子移動(Hydrogen Atom Transfer: HAT)によって単純なアルカンから炭素ラジカルを発生させることができれば、先行研究と同様にジボロンとの反応が進行しC(sp3)–Hホウ素化反応が達成できると考えた(図1B)。HAT触媒はC(sp2)–H結合よりも結合解離エネルギー(Bond Dissociation Energy: BDE)の低いC(sp3)–H結合から優先的に水素原子を引き抜くと考えられる。そのため、従来のC–Hホウ素化における難題であった、C(sp2)–H結合存在下でのC(sp3)–H結合選択的ホウ素化が実現できると期待される。以上の仮説のもと、著者らは可視光照射下、N-アルコキシフタルイミドとB-クロロカテコールボランより調製されるHAT触媒を用いることで、C(sp3)–H結合選択的なホウ素化反応を見いだした(図1C)。本反応は芳香族C–H結合存在下でも選択的にC(sp3)–H結合をホウ素化できる。

図 1 (A) Aggarwalらの先行研究(C) HATを利用するホウ素化の作業仮説 (D) 今回の反応

“Metal-Free Photoinduced C(sp3)–H Borylation of Alkanes”
Shu, C.; Noble, A.; Aggarwal, V. K. Nature, 2020, 586, 714–719.
DOI: 10.1038/s41586-020-2831-6

論文著者の紹介

研究者:Varinder K. Aggarwal

論文の概要

本反応はB-クロロカテコールボラン(3)存在下、ビス(カテコラート)ジボロン2を添加し、種々のアルカン1に390 nmの光を照射することで5’が得られる。容易に加水分解される5’はトリエチルアミンとピナコールを添加して5へ変換した (図 2A)。本反応の基質適用範囲は広く、単純なアルカン1aだけでなくハロゲン1bやアミド1cが利用できた。また、芳香族C–H結合やベンジル位C–H結合をもつ1dもC(sp3)–H結合が選択的にホウ素化される。詳細は割愛するが、有機ケイ素化合物を基質とすると、α-シリル位のC(sp3)–H結合選択的にホウ素化が進行した。
本反応の推定反応機構は次の通りである(図 2B)。(i) まず4が励起されアルコキシラジカル6が生成する。(ii) その後、3と反応してアート錯体Iを形成する。このとき63、およびクロロラジカルと7は平衡にある。(iii) その後アルカン1から錯体IへのHATによりアルキルラジカルIIを与え、2と反応することで錯体IIIを得る。(iv) さらに、IIIはClと反応してホウ素化体5およびラジカルアニオンIVを生成する。(v) 最後にIV4の反応によりIが再生する。
次に著者らは本反応の位置選択性について調査した(図 2C)。まず、ボラート7の添加量を変化させた場合、7の添加量が多いほど一級C–H結合が選択的にホウ素化された。また、2の添加量を増加するとホウ素化の位置選択性は低下した。この結果から著者らは、嵩高いアート錯体IがHATに関与するため立体障害の小さなC–H結合の官能基化が優先したと考えた。一方、2の増加による位置選択性の低下は、副生した二級ラジカルが反応しやすくなったためとしている。さらに、ラジカル捕捉実験ではアミド9がわずかしか得られなかったことから、ホウ素化の位置選択性はアルキルラジカルが発生する過程、すなわちHATの過程で発現していることが示唆された。

図2. (A) 基質適用範囲 (B) 推定反応機構 (C) 反応機構解明実験

以上、HAT触媒を用いたC(sp3)–H結合選択的ホウ素化が開発された。過剰量の基質が必要である点や収率に課題が残るものの、医農薬品や有機材料合成への貢献が期待される。

参考文献

  1. (a) Hartwig, J. F. Regioselectivity of the Borylation of Alkanes and Arenes. Chem. Soc. Rev., 2011, 40, 1992–2002. DOI: 10.1039/c0cs00156b (b) Chen, H.; Hartwig, J. F. Catalytic, Regiospecific End-Functionalization of Alkanes: Rhenium-Catalyzed Borylation under Photochemical Conditions. Angew. Chem., Int. Ed. 1999, 38, 3391–3393. DOI: 10.1002/(SICI)1521-3773(19991115)38:22<3391::AID-ANIE3391>3.0.CO;2-N (c) Chen, H.; Schlecht, S.; Semple, T. C.; Hartwig, J. F. Thermal, Catalytic, Regiospecific Functionalization of Alkanes. Science 2000, 287, 1995–1997. DOI: 10.1126/science.287.5460.1995 (d) Murphy, J. M.; Lawrence, J. D.; Kawamura, K.; Incarvito, C.; Hartwig, J. F. Ruthenium-Catalyzed Regiospecific Borylation of Methyl C–H Bonds. J. Am. Chem. Soc. 2006, 128, 13684–13685. DOI: 10.1021/ja064092p (e) Ohmura, T.; Torigoe, T.; Suginome, M. Iridium-catalysed Borylation of Sterically Hindered C(sp3)–H Bonds: Remarkable Rate Acceleration by a Catalytic Amount of Potassium tert-Butoxide. Chem. Commun. 2014, 50, 6333–6336. DOI: 10.1039/c4cc01262c (f) Oeschger, R. et al. Diverse Functionalization of Strong Alkyl C–H Bonds by Undirected Borylation. Science 2020, 368, 736–741. DOI: 10.1126/science.aba6146
  2. Fawcett, A.; Pradeilles, J.; Wang, Y.; Mutsuga, T.; Myers, E. L.; Aggarwal, V. K. Photoinduced Decarboxylative Borylation of Carboxylic Acids. Science 2017, 357, 283–286. DOI: 1126/science.aan3679

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. オキシトシンを「見える化」するツールの開発と応用に成功-謎に包ま…
  2. キノコから見いだされた新規生物活性物質「ヒトヨポディンA」
  3. メカノクロミズムの空間分解能の定量的測定に成功
  4. 化学系人材の、より良い将来選択のために
  5. ケムステタイムトラベル2010 ~今こそ昔の記事を見てみよう~
  6. グリコシル化反応を楽にする1位選択的”保護̶…
  7. 化学オリンピックを通して考える日本の理科教育
  8. 【予告】ケムステ新コンテンツ「元素の基本と仕組み」

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 存命化学者達のハーシュ指数ランキングが発表
  2. 反芳香族性を有する拡張型フタロシアニン
  3. フローマイクロリアクターを活用した多置換アルケンの効率的な合成
  4. PACIFICHEM2010に参加してきました!①
  5. ダイセル発、にんにく由来の機能性表示食品「S-アリルシステイン」
  6. ゲルハルト・エルトゥル Gerhard Ertl
  7. 第2回慶應有機合成化学若手シンポジウム
  8. もう入れたよね?薬学会年会アプリ
  9. ナノチューブを引き裂け! ~物理的な意味で~
  10. 周期表の形はこれでいいのか? –その 2: s ブロックの位置 編–

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年2月
1234567
891011121314
15161718192021
22232425262728

注目情報

最新記事

5/15(水)Zoom開催 【旭化成 人事担当者が語る!】2026年卒 化学系学生向け就活スタート講座

化学系の就職活動を支援する『化学系学生のための就活』からのご案内です。化学業界・研究職でのキャリ…

フローマイクロリアクターを活用した多置換アルケンの効率的な合成

第610回のスポットライトリサーチは、京都大学大学院理学研究科(依光研究室)に在籍されていた江 迤源…

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP