[スポンサーリンク]

化学者のつぶやき

ケクレン、伸長(新調)してくれん?

[スポンサーリンク]

Bi(OTf)3触媒によるビニルエーテルの環化反応によりジグザグエッジ伸長型ケクレンが合成された。合成されたケクレン類縁体はベンゼノイド型のπ共役構造であることが明らかにされた。

ケクレンの化学

ケクレンは12個のベンゼン環が環状に縮環した多環芳香族炭化水素である。その構造から、ケクレンはアヌレノイド型とベンゼノイド型のどちらのπ電子分布をもつかが注目されていた(図1左上)。1978年にDiederichとStaabがケクレンを初めて合成し、ケクレンがベンゼノイド型芳香族であることを明らかにした[1]。ケクレンの合成以降、縮環様式の異なるケクレン類縁体が合成されてきた[2]。例として、ベンゼン環を減らした類縁体(コラニュレン[(62, 61, 62, 61, 62)2]; 図1左下)や辺の数を増やした類縁体(セプチュレン・オクチュレン; 図1 中央下)がある[3–5]。これらはケクレンと同様にベンゼノイド型芳香族である。

著者らは今回、Bi(OTf)3触媒によるビニルエーテルの環化反応によりジグザグエッジ伸長型ケクレンを合成した。また、種々の解析手法を用いてジグザグエッジ伸長型ケクレンの芳香族性を明らかにした。ちなみに、著者らは本反応を用いて、いくつかのケクレン類縁体を合成している[6, 7]

図1. ケクレンとケクレン類縁体

 

Expanded Kekulenes

Fan, W.; Han, Y.; Wang, X.; Hou, X.; Wu, J. J. Am. Chem. Soc. 2021, 143, 13908–13916.

DOI: 10.1021/jacs.1c06757

論文著者の紹介

研究者:Jishan Wu

研究者の経歴:

1993–1997 B.Sc., Wuhan University, China

1997–2000 M.Sc., Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, China (Prof. Xianhong Wang and Prof. Fosong Wang)

2000–2004 Ph.D., Max-Planck Institute for Polymer Research, Germany (Prof. Klaus Müllen)

2004–2005 Project leader, Max-Planck Institute for Polymer Research, Germany

2005–2007 Postdoc, University of California, USA (Prof. Sir Fraser Stoddart)

2007–2011 Assistant Professor, National University of Singapore, Shingapore

2012–2017 Associate Professor, National University of Singapore, Shingapore

2017– Professor, National University of Singapore, Shingapore

研究内容:構造有機化学、超分子化学、近赤外線吸収色素の開発

 

論文の概要

著者らはまず、種々のビルディングブロックを用いた鈴木–宮浦カップリングにより前駆体1を合成した(図2A)。続いてBi(OTf)3触媒を用いたビニルエーテルの環化反応により[m,n] = [3,4], [4,4], [3,5], [4,5]のケクレン類縁体2を合成した。

1H NMRにおいて、2の環内側の水素シグナルは全て低磁場領域(9.3–11.3 ppm)に現れた(図2B)。2がアヌレノイド型芳香族であれば、環内側の水素は分子全体に広がる環電流から遮蔽効果を受け、シグナルは芳香族領域よりも高磁場で観測されると考えられる。今回、環内側の水素シグナルが低磁場領域に出現したので、2は局所的に芳香族性をもつベンゼノイド型芳香族であると考えられる。

理論計算を用いて2の芳香族性を解析した。ここでは[m,n] = [3,5]の場合(2a)について示す(図2C)。2aの最安定構造における炭素炭素結合長に着目すると、2aの頂点に位置する環C1では結合交替が見られた一方で、ベンゼン環C2およびアントラセン環C3では結合交替が見られなかった。さらに、C1のNICS値はC2およびC3よりも小さい負の値を示したので、C1の芳香族性はC2C3よりも低いといえる。加えて、2aの磁気的遮蔽効果(ICSS: isochemical shielding surface)を可視化すると、C2C3環内は強く遮蔽されており、2aの環内側、および外側周辺では脱遮蔽されている(図2D)。このICSS解析の結果は2aのNMRスペクトルを裏付けるものである。これらの理論計算結果は、どれもベンゼン/アントラセン環(C2, C3)へのπ共役電子の分布を示唆している。したがって、理論計算からも2aはベンゼノイド型芳香族であることが支持された。また、一連のジグザグエッジ伸長型ケクレン2でも同様の計算結果が得られたので、2はベンゼノイド型であると結論づけた。

図2. (A) [m,n]シクロアレーン2の合成と共鳴構造 (B) 2の1H NMRスペクトル (C) 最安定構造における結合長とNICS値 (D) 2aの磁気的遮蔽効果(ICSS)の等高線図 (論文から一部改変)

以上、Bi(OTf)3触媒によるビニルエーテルの環化反応によりジグザグエッジ伸長型ケクレンが合成された。実験と理論計算の両面から、合成されたケクレン類縁体はケクレンと同様にベンゼノイド型芳香族であることが明らかにされた。また、このケクレン類縁体がもつ反応性の高いアセン構造は、さらなる化学修飾の足掛かりとなるため、ケクレン類縁体を出発物質とした新たなベルト状分子やナノグラフェンの合成が期待される。

参考文献

  1. Diederich, F.; Staab, H. A. Benzenoid versus Annulenoid Aromaticity: Synthesis and Properties of Kekulene. Angew. Chem., Int. Ed. Engl. 1978, 17, 372–374. DOI: 1002/anie.197803721
  2. Buttrick, J. C.; King, B. T. Kekulenes, Cycloarenes, and Heterocycloarenes: Addressing Electronic Structure and Aromaticity through Experiments and Calculations. Chem. Soc. Rev. 2017, 46, 7–20. DOI: 1039/c6cs00174b
  3. Funhoff, D. J. H.; Staab, H. A. Cyclo[d.e.d.e.e.d.e.d.e.e.]decakisbenzene, a New Cycloarene. Angew. Chem., Int. Ed. Engl. 1986, 25, 742–744. DOI: 1002/anie.198607421
  4. Kumar, B.; Viboh, R. L.; Bonifacio, M. C.; Thompson, W. B.; Buttrick, J. C.; Westlake, B. C.; Kim, M.-S.; Zoellner, R. W.; Varganov, S. A.; Mörschel, P.; Teteruk, J.; Schmidt, M. U.; King, B. T. Septulene: The Heptagonal Homologue of Kekulene. Angew. Chem., Int. Ed. 2012, 51, 12795–12800. DOI: 1002/anie.201203266
  5. Majewski, M. A.; Hong, Y.; Lis, T.; Gregoliński, J.; Chmielewski, P. J.; Cybinśka, J.; Kim, D.; Stępiń, M. Octulene: A Hyperbolic Molecular Belt that Binds Chloride Anions. Angew. Chem., Int. Ed. 2016, 55, 14072–14076. DOI: 1002/anie.201608384
  6. Fan, W.; Han, Y.; Dong, S.; Li, G.; Lu, X.; Wu, J. Facile Synthesis of Aryl-Substituted Cycloarenes via Bismuth(III) Triflate-Catalyzed Cyclization of Vinyl Ethers. CCS Chem. 2020, 2, 1445–1452. DOI: 31635/ccschem.020.202000356
  7. Fan, W.; Matsuno, T.; Han, Y.; Wang, X.; Zhou, Q.; Isobe, H.; Wu, J. Synthesis and Chiral Resolution of Twisted Carbon Nanobelts. J. Am. Chem. Soc. 2021,143, 15924–15929 DOI: 1021/jacs.1c08468

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 5-ヒドロキシトリプトファン選択的な生体共役反応
  2. 日本のお家芸、糖転移酵素を触媒とするための簡便糖ドナー合成法
  3. フラッシュ精製装置「バイオタージSelect」を試してみた
  4. 書物から学ぶ有機化学 3
  5. クロスカップリングはどうやって進行しているのか?
  6. 化学者だって数学するっつーの! :定常状態と変数分離
  7. フラーレンの単官能基化
  8. 電池材料粒子内部の高精細な可視化に成功~測定とデータ科学の連携~…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 西田 篤司 Atsushi Nishida
  2. 第28回光学活性化合物シンポジウム
  3. 科学:太古の海底に眠る特効薬
  4. 化学者の単語登録テクニック
  5. 秋田英万 Akita Hidetaka
  6. フェノールのC–O結合をぶった切る
  7. 非常に小さな反転障壁を示す有機リン化合物の合成
  8. 高校教科書に研究が載ったはなし
  9. 電池で空を飛ぶ
  10. ロバート・フィップス Robert J. Phipps

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年11月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

注目情報

最新記事

表面酸化した銅ナノ粒子による低温焼結に成功~銀が主流のプリンテッドエレクトロニクスに、銅という選択肢を提示~

第393回のスポットライトリサーチは、北海道大学 大学院工学院 材料科学専攻 マテリアル設計講座 先…

高分子材料におけるマテリアルズ・インフォマティクスの活用とは?

 申込みはこちら■セミナー概要本動画は、20022年5月18日に開催されたセミナー「高分…

元素のふるさと図鑑

2022年も折り返しに差し掛かりました。2022年は皆さんにとってどんな年になり…

Q&A型ウェビナー カーボンニュートラル実現のためのマイクロ波プロセス 〜ケミカルリサイクル・乾燥・濃縮・焼成・剥離〜

<内容>本ウェビナーでは脱炭素化を実現するための手段として、マイクロ波プロセスをご紹介いたします…

カルボン酸、窒素をトスしてアミノ酸へ

カルボン酸誘導体の不斉アミノ化によりキラルα-アミノ酸の合成法が報告された。カルボン酸をヒドロキシル…

海洋シアノバクテリアから超強力な細胞増殖阻害物質を発見!

第 392回のスポットライトリサーチは、慶應義塾大学大学院 理工学研究科 博士後期課…

ポンコツ博士の海外奮闘録⑧〜博士,鍵反応を仕込む②〜

ポンコツシリーズ一覧国内編:1話・2話・3話国内外伝:1話・2話・留学TiPs海外編:1…

給電せずに電気化学反応を駆動 ~環境にやさしい手法として期待、極限環境での利用も~

第391回のスポットライトリサーチは、東京工業大学物質理工学院応用化学系 稲木研究室の岩井 優 (い…

GCにおける水素のキャリアガスとしての利用について

最近ヘリウムの深刻な供給不安により、GCで使うガスボンベの納期が未定となってしまい、ヘリウムが無くな…

タンパク質リン酸化による液-液相分離制御のしくみを解明 -細胞内非膜型オルガネラの構築原理の解明へ-

第 390 回のスポットライトリサーチは、東京大学大学院 理学系研究科 助教の 山崎…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP