[スポンサーリンク]

化学者のつぶやき

ケクレン、伸長(新調)してくれん?

[スポンサーリンク]

Bi(OTf)3触媒によるビニルエーテルの環化反応によりジグザグエッジ伸長型ケクレンが合成された。合成されたケクレン類縁体はベンゼノイド型のπ共役構造であることが明らかにされた。

ケクレンの化学

ケクレンは12個のベンゼン環が環状に縮環した多環芳香族炭化水素である。その構造から、ケクレンはアヌレノイド型とベンゼノイド型のどちらのπ電子分布をもつかが注目されていた(図1左上)。1978年にDiederichとStaabがケクレンを初めて合成し、ケクレンがベンゼノイド型芳香族であることを明らかにした[1]。ケクレンの合成以降、縮環様式の異なるケクレン類縁体が合成されてきた[2]。例として、ベンゼン環を減らした類縁体(コラニュレン[(62, 61, 62, 61, 62)2]; 図1左下)や辺の数を増やした類縁体(セプチュレン・オクチュレン; 図1 中央下)がある[3–5]。これらはケクレンと同様にベンゼノイド型芳香族である。

著者らは今回、Bi(OTf)3触媒によるビニルエーテルの環化反応によりジグザグエッジ伸長型ケクレンを合成した。また、種々の解析手法を用いてジグザグエッジ伸長型ケクレンの芳香族性を明らかにした。ちなみに、著者らは本反応を用いて、いくつかのケクレン類縁体を合成している[6, 7]

図1. ケクレンとケクレン類縁体

 

Expanded Kekulenes

Fan, W.; Han, Y.; Wang, X.; Hou, X.; Wu, J. J. Am. Chem. Soc. 2021, 143, 13908–13916.

DOI: 10.1021/jacs.1c06757

論文著者の紹介

研究者:Jishan Wu

研究者の経歴:

1993–1997 B.Sc., Wuhan University, China

1997–2000 M.Sc., Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, China (Prof. Xianhong Wang and Prof. Fosong Wang)

2000–2004 Ph.D., Max-Planck Institute for Polymer Research, Germany (Prof. Klaus Müllen)

2004–2005 Project leader, Max-Planck Institute for Polymer Research, Germany

2005–2007 Postdoc, University of California, USA (Prof. Sir Fraser Stoddart)

2007–2011 Assistant Professor, National University of Singapore, Shingapore

2012–2017 Associate Professor, National University of Singapore, Shingapore

2017– Professor, National University of Singapore, Shingapore

研究内容:構造有機化学、超分子化学、近赤外線吸収色素の開発

 

論文の概要

著者らはまず、種々のビルディングブロックを用いた鈴木–宮浦カップリングにより前駆体1を合成した(図2A)。続いてBi(OTf)3触媒を用いたビニルエーテルの環化反応により[m,n] = [3,4], [4,4], [3,5], [4,5]のケクレン類縁体2を合成した。

1H NMRにおいて、2の環内側の水素シグナルは全て低磁場領域(9.3–11.3 ppm)に現れた(図2B)。2がアヌレノイド型芳香族であれば、環内側の水素は分子全体に広がる環電流から遮蔽効果を受け、シグナルは芳香族領域よりも高磁場で観測されると考えられる。今回、環内側の水素シグナルが低磁場領域に出現したので、2は局所的に芳香族性をもつベンゼノイド型芳香族であると考えられる。

理論計算を用いて2の芳香族性を解析した。ここでは[m,n] = [3,5]の場合(2a)について示す(図2C)。2aの最安定構造における炭素炭素結合長に着目すると、2aの頂点に位置する環C1では結合交替が見られた一方で、ベンゼン環C2およびアントラセン環C3では結合交替が見られなかった。さらに、C1のNICS値はC2およびC3よりも小さい負の値を示したので、C1の芳香族性はC2C3よりも低いといえる。加えて、2aの磁気的遮蔽効果(ICSS: isochemical shielding surface)を可視化すると、C2C3環内は強く遮蔽されており、2aの環内側、および外側周辺では脱遮蔽されている(図2D)。このICSS解析の結果は2aのNMRスペクトルを裏付けるものである。これらの理論計算結果は、どれもベンゼン/アントラセン環(C2, C3)へのπ共役電子の分布を示唆している。したがって、理論計算からも2aはベンゼノイド型芳香族であることが支持された。また、一連のジグザグエッジ伸長型ケクレン2でも同様の計算結果が得られたので、2はベンゼノイド型であると結論づけた。

図2. (A) [m,n]シクロアレーン2の合成と共鳴構造 (B) 2の1H NMRスペクトル (C) 最安定構造における結合長とNICS値 (D) 2aの磁気的遮蔽効果(ICSS)の等高線図 (論文から一部改変)

以上、Bi(OTf)3触媒によるビニルエーテルの環化反応によりジグザグエッジ伸長型ケクレンが合成された。実験と理論計算の両面から、合成されたケクレン類縁体はケクレンと同様にベンゼノイド型芳香族であることが明らかにされた。また、このケクレン類縁体がもつ反応性の高いアセン構造は、さらなる化学修飾の足掛かりとなるため、ケクレン類縁体を出発物質とした新たなベルト状分子やナノグラフェンの合成が期待される。

参考文献

  1. Diederich, F.; Staab, H. A. Benzenoid versus Annulenoid Aromaticity: Synthesis and Properties of Kekulene. Angew. Chem., Int. Ed. Engl. 1978, 17, 372–374. DOI: 1002/anie.197803721
  2. Buttrick, J. C.; King, B. T. Kekulenes, Cycloarenes, and Heterocycloarenes: Addressing Electronic Structure and Aromaticity through Experiments and Calculations. Chem. Soc. Rev. 2017, 46, 7–20. DOI: 1039/c6cs00174b
  3. Funhoff, D. J. H.; Staab, H. A. Cyclo[d.e.d.e.e.d.e.d.e.e.]decakisbenzene, a New Cycloarene. Angew. Chem., Int. Ed. Engl. 1986, 25, 742–744. DOI: 1002/anie.198607421
  4. Kumar, B.; Viboh, R. L.; Bonifacio, M. C.; Thompson, W. B.; Buttrick, J. C.; Westlake, B. C.; Kim, M.-S.; Zoellner, R. W.; Varganov, S. A.; Mörschel, P.; Teteruk, J.; Schmidt, M. U.; King, B. T. Septulene: The Heptagonal Homologue of Kekulene. Angew. Chem., Int. Ed. 2012, 51, 12795–12800. DOI: 1002/anie.201203266
  5. Majewski, M. A.; Hong, Y.; Lis, T.; Gregoliński, J.; Chmielewski, P. J.; Cybinśka, J.; Kim, D.; Stępiń, M. Octulene: A Hyperbolic Molecular Belt that Binds Chloride Anions. Angew. Chem., Int. Ed. 2016, 55, 14072–14076. DOI: 1002/anie.201608384
  6. Fan, W.; Han, Y.; Dong, S.; Li, G.; Lu, X.; Wu, J. Facile Synthesis of Aryl-Substituted Cycloarenes via Bismuth(III) Triflate-Catalyzed Cyclization of Vinyl Ethers. CCS Chem. 2020, 2, 1445–1452. DOI: 31635/ccschem.020.202000356
  7. Fan, W.; Matsuno, T.; Han, Y.; Wang, X.; Zhou, Q.; Isobe, H.; Wu, J. Synthesis and Chiral Resolution of Twisted Carbon Nanobelts. J. Am. Chem. Soc. 2021,143, 15924–15929 DOI: 1021/jacs.1c08468
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 「自分の意見を言える人」がしている3つのこと
  2. 鉄触媒を用いて効率的かつ選択的な炭素-水素結合どうしのクロスカッ…
  3. Wei-Yu Lin教授の講演を聴講してみた
  4. 有機合成化学協会誌2019年2月号:触媒的脱水素化・官能性第三級…
  5. 炭素をBNに置き換えると…
  6. 芳香族化合物のC–Hシリル化反応:第三の手法
  7. BASFとはどんな会社?-1
  8. ベンゼン環が速く・キレイに描けるルーズリーフ

注目情報

ピックアップ記事

  1. 【書評】スキルアップ有機化学 しっかり身につく基礎の基礎
  2. ダウ・ケミカル、液晶パネル用化学品をアジア生産へ
  3. 【ケムステSlackに訊いてみた③】化学で美しいと思うことを教えて!
  4. ゲノム編集CRISPRに新たな進歩!トランスポゾンを用いた遺伝子導入
  5. フローリアクターでペプチド連結法を革新する
  6. 軽量・透明・断熱!エアロゲル(aerogel)を身近に
  7. マテリアルズ・インフォマティクスにおける分子生成の応用 ー新しい天然有機化合物の生成を目指すー
  8. 第26回「分子集合体の極限に迫る」矢貝史樹准教授
  9. 光で動くモーター 世界初、東工大教授ら開発
  10. Bayer/Janssen Rivaroxaban 国内発売/FDA適応拡大申請

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年11月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP