[スポンサーリンク]

化学者のつぶやき

複雑な生化学反応の条件検討に最適! マイクロ流体技術を使った新手法

[スポンサーリンク]

今回紹介する論文は、東京大学生産技術研究所の藤井輝夫教授、フランス国立科学研究センターの Y. Rondelez 研究員らの研究です(トップ画像出典・改変:藤井研究室)。テーマはマイクロ流体技術を応用して多数の反応条件を一気に計測する新手法。コンピュータによるシミュレーションと異なり、実験的に複雑な生化学反応の反応条件を検討するのは時間と手間がかかります。著者等は、マイクロ流体技術によって一気に解決するかもしれない画期的な技術を開発し、実際に「反応が進むにつれて 2 通りの安定状態をとりうる反応系」と「“捕食者”と“獲物”の関係を模した反応系」という 2 種類の反応系でデモンストレーションしました。

High-resolution mapping of bifurcations in nonlinear biochemical circuits

A. J. Genot, A. Baccouche, R. Sieskind, N. Aubert-Kato, N. Bredeche, J. F. Bartolo, V. Taly, T. Fujii and Y. Rondelez
Nature Chemistry (2016) doi:10.1038/nchem.2544

マイクロ流体技術で液滴をたくさん作る

まず課題になるのは「どうやって多数の反応条件を実験的に作り出すか」です。ここでマイクロ流体技術の登場です。

nchem2544-01

図 1:多数の反応条件を一度に解析する新手法の概要(論文の Fig.1 と Fig.S2、Movie 1 から作成)

反応に参加する各分子種を、各分子種を見積もるための蛍光プローブとともに別々のチューブに入れておきます。チューブはそれぞれ独立した流路に接続しており、それぞれのチューブに圧力をかけると、流路に向かって溶液が押し出され、合流地点で各分子種が出会って混合します。このときの各分子種の割合は各チューブにかけた圧力に応じて変化しますが、合計の流量は一定となるように調整しておきます。押し出された水溶液はオイルによって千切られて、均一なマイクロメートルサイズの液滴になっていきます。各チューブにかける圧力をいろいろ変化させることで、さまざまな混合比の液滴ができますので、あとはこの各液滴を追跡して蛍光を観察すれば、どんな比率で混合するとどのように成分が時間変化していくか知ることができるのです。

観察とマッピング:どうやって液滴を保持するか?

新しい計測の方法は、極めて直感的で分かりやすい方法ですが、そこには難しい課題があったようです。反応条件の異なる液滴を均一なサイズで多数作るだけでなく、反応の経過を観察するためには長時間液滴を固定しなければなりません。これを、表面を疎水性に処理した 2 枚のガラスの間に液滴を挟んで密閉することで、油相に分散した液滴(水相)を一層に並べて保持するという方法で解決しました。これで、顕微鏡を使った個々の液滴のトラッキングが可能になったのです。

この方法を使って約 1 万個の液滴を集め、その蛍光を測定して一つのダイアグラムにマップしていきます。各分子種の初濃度を「入力パラメータ」とみなして座標軸にとり、目的の成分の濃度を色に対応させて各液滴を座標にプロットすると、各反応条件とその結果が一目瞭然になります。

応用:分子の生態系モデル

今回の新手法は、どのような反応系の検討に使えるのでしょうか。例として、今回の論文で実証された生化学反応系のうち、「“捕食者”と“獲物”の関係を模した反応系」を挙げます。これは、著者らが 3 年前に発表した論文で紹介された反応系です。

nchem2544-02

図 2:“捕食者”と“獲物”の関係を模した反応系(論文の Fig.4 と文献 1 の Fig.1 から作成)

生態系には大きく分けて草食動物と肉食動物がいます。草食動物が草を食べて増えると、それを食べる肉食動物が増えます。肉食動物が増えるにつれて草食動物は餌にされて減っていきますが、そうすると肉食動物は餌が足りなくなって飢えるため減ります。すると今度は、草食動物がまた増えることができます。このように、生態系では個体数が振動するという現象が起こります。

化学の分野でよく知られている振動といえば、ベロウソフ・ジャボチンスキー反応(Belousov-Zhabotinsky Reaction;BZ 反応)ですね。しかし、このような低分子の反応ではなく、著者らは新たに DNA の伸長・増幅・分解反応を利用して、この生態系を真似た分子システム (molecular ecosystem) を構築しました。反応の各段階は、テンプレートを元にして DNA 鎖が伸長・複製される反応、酵素によって分解される反応という極めて単純なものです。これらを組み合わせることで、正味の反応としてそれぞれ

  1. 獲物の増殖:N (+ G) → N + N (+ G)
  2. 捕食:N + P → P + P
  3. 減衰:N, P → ∅

が完成します。これを本論文の計測系と組み合わせることで、テンプレートの濃度や反応を触媒する酵素が特定の条件を満たすときに、実際に“獲物”の濃度が振動する様子を観察することに成功しています。

まとめ

今回の新手法で、理論的には予測されていても実験的に観察するのが困難だった反応条件を、網羅的に試すことができるようになりました。今後、生体内での複雑な反応経路の解明などへの応用が期待されます。

後に、筆頭著者であるGenot博士からのコメントをいただきましたので紹介させて頂きます。

dr_genot

本研究で最も苦労したことのひとつが,液滴の観察チャンバづくりです.液滴のサイズは直径50μmですが,後の画像解析のために,液滴を24から72時間の間,ほとんど動かさないようにする必要がありました.観察チャンバは共著者のBaccouche博士が開発したのですが,数ヶ月を要しました.1日がかりで実験セットアップを完了させ,いざ液滴の観察を始めたところ,地震の影響で液滴がずれて悔しい思いをしたことも今では懐かしい思い出です。

参考文献

  1. Fujii, T. & Rondelez, Y. Predator–prey molecular ecosystems. ACS Nano 7, 27–34 (2013). doi:10.1021/nn3043572
Avatar photo

アセトアミノフェン

投稿者の記事一覧

工学(修士);専門は応用化学・生物物理学。会社員です。

関連記事

  1. 鉄触媒での鈴木-宮浦クロスカップリングが実現!
  2. 有機合成化学協会誌2023年8月号:フェノール-カルベン不斉配位…
  3. 第七回ケムステVプレミアレクチャー「触媒との『掛け算』で研究者を…
  4. 化学工業で活躍する有機電解合成
  5. 相撲と化学の意外な関係(?)
  6. 向山アルドール反応40周年記念シンポジウムに参加してきました
  7. 水素原子一個で強力な触媒をケージング ――アルツハイマー病関連…
  8. 夏休みのおでかけに最適! 化学にまつわる博物館5選 ~2024年…

注目情報

ピックアップ記事

  1. 第157回―「メカノケミカル合成の方法論開発」Tomislav Friščić教授
  2. 2-(トリメチルシリル)エトキシカルボニル保護基 Teoc Protecting Group
  3. なぜクロスカップリングは日本で発展したのか?
  4. 2つの異なるホウ素置換基が導入された非共役ジエンの触媒的合成と細胞死制御分子の形式合成に成功
  5. 第130回―「無機薄膜成長法を指向した有機金属化学」Lisa McElwee-White教授
  6. Zoomオンライン革命!
  7. 反応経路自動探索が見いだした新規3成分複素環構築法
  8. 複雑分子を生み出す脱水素型ディールス・アルダー反応
  9. 2015年化学10大ニュース
  10. 武田 新規ARB薬「アジルバR錠」発売

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年10月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

第32回光学活性化合物シンポジウム

第32回光学活性化合物シンポジウムのご案内光学活性化合物の合成および機能創出に関する研究で顕著な…

位置・立体選択的に糖を重水素化するフロー合成法を確立 ― Ru/C触媒カートリッジで150時間以上の連続運転を実証 ―

第 659回のスポットライトリサーチは、岐阜薬科大学大学院 アドバンストケミストリー…

【JAICI Science Dictionary Pro (JSD Pro)】CAS SciFinder®と一緒に活用したいサイエンス辞書サービス

ケムステ読者の皆様には、CAS が提供する科学情報検索ツール CAS SciFind…

有機合成化学協会誌2025年5月号:特集号 有機合成化学の力量を活かした構造有機化学のフロンティア

有機合成化学協会が発行する有機合成化学協会誌、2025年5月号がオンラインで公開されています!…

ジョセップ・コルネラ Josep Cornella

ジョセップ・コルネラ(Josep Cornella、1985年2月2日–)はスペイン出身の有機・無機…

電気化学と数理モデルを活用して、複雑な酵素反応の解析に成功

第658回のスポットライトリサーチは、京都大学大学院 農学研究科(生体機能化学研究室)修士2年の市川…

ティム ニューハウス Timothy R. Newhouse

ティモシー・ニューハウス(Timothy R. Newhouse、19xx年xx月x日–)はアメリカ…

熊谷 直哉 Naoya Kumagai

熊谷 直哉 (くまがいなおや、1978年1月11日–)は日本の有機化学者である。慶應義塾大学教授…

マシンラーニングを用いて光スイッチング分子をデザイン!

第657 回のスポットライトリサーチは、北海道大学 化学反応創成研究拠点 (IC…

分子分光学の基礎

こんにちは、Spectol21です!分子分光学研究室出身の筆者としては今回の本を見逃…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP