[スポンサーリンク]

一般的な話題

IRの基礎知識

赤外吸収分光法(infrared absorption spectrometry, IR)とは、試料に赤外線をあてて得られる吸収スペクトルを測定する分析法である。とりわけ、有機化合物にどのような官能基が含まれるかを決定したい時に威力を発揮する。
今回はIRの原理から実例までを紹介しよう。

原理

原子同士の結合は硬く固定されているわけではなく、バネでつながれるかのように、ある程度の柔軟性をもっている。分子に赤外領域のエネルギーを与えると、化学結合(長さ・角度)の振動が生じる。このとき、吸収された赤外線エネルギー量を測定することで、化学結合の種類(官能基)を知ることができる。このため、およそ有機化合物と呼べるものは、すべからく赤外領域に固有の吸収スペクトルを持っている。

結合振動は、伸縮振動変角振動の二つに大別される。

IR_1

伸縮振動(左:対称振動 右:逆対称振動)

変角振動(左:横揺れ 中央左:はさみ 中央右:縦ゆれ 右:ひねり)

変角振動(左:横揺れ 中央左:はさみ 中央右:縦ゆれ 右:ひねり)  二重矢印は画面に対して垂直方向を示す。

この伸縮振動と変角振動のエネルギーはそれぞれ異なっている。つまり、一つの化学結合に対して、二種類のスペクトルが現れることになる。

測定装置

IR測定装置には原理毎に様々な種類があるが、現代の主流はフーリエ変換赤外分光分析(FT-IR)である。

日本分光製FT-IR装置(ホームページより引用)

日本分光製FT-IR装置(ホームページより引用)

FT-IRの装置は大まかに①光源、②干渉計、③試料室、④検出器、⑤解析用PCから構成される。

光源から出た赤外線は、半透鏡を用いて、2つの経路(反射光と透過光)に分離される。移動鏡を動かすことで一方の光路長が変わり、これが再合成されることで異なる干渉波(インターフェログラム)が得られる。この干渉波の向かう先に試料室を置き、サンプルを透過した光を検出し、PCで波数成分毎に分離(フーリエ解析)することによって、吸収スペクトルが得られる。

スリットを使わないため、光源エネルギーを有効活用でき、高感度に測定できるという特徴がある。また多数の波長を同時に測定できることも利点である。

 

解析方法

赤外吸収スペクトルの吸収は4000〜650 cm-1まで目盛られ、波数の大きいほうが高エネルギー側である。また、赤外吸収スペクトルでは吸光率を求めることはせず、相対的な強弱で表すのが一般的である。

強度 記号
very strong vs
strong s
mediam m
weak w
variable v
broad br

チャートの読み解きは、まずスペクトル全体を4000〜1500 cm-1と1500〜650 cm-1の二つの領域に分けて考える。

前者には伸縮振動による吸収のみが現れるので、比較的簡単なスペクトルとなる。官能基毎に決まった位置にピークが現れるため構造決定に有用である。大まかには高波数側から水素含有単結合→三重結合→二重結合の順に並んでいる。

後者には変角振動と単結合伸縮振動に由来する複雑な吸収スペクトルが現れ、概ね化合物固有のスペクトルが得られる。この領域は指紋領域と呼ばれる。

もう少し細かい手順を踏んで解析したい方は、以下のインストラクション画像に従ってみるといいだろう。

解析の実例

 

それでは実際に、以下の簡単な分子についてIRスペクトル解析をしてみよう。

IR_7

オクタン(脂肪族炭化水素)

オクタンのIRスペクトル(SDBSより引用)

オクタンは直鎖状炭化水素であるため、分子中には-CH3と-CH2-の二種類の官能基しか存在しない。吸収帯の数も少なく、はっきりしているため解析は簡単である。

 

トルエン(芳香族炭化水素)

トルエンのIRスペクトル(SDBSより引用)

トルエンはオクタンと比べると、少し複雑なスペクトルである。しかしピークははっきりしているため解析しやすい。このスペクトルでは1625〜1575 cm-1、1525〜1475 cm-1の2本の吸収より、芳香族C=Cが含まれている事がわかる。また729、696 cm-1の2本の吸収は芳香族一置換体を示している。2920 cm-1の存在から、トルエンのメチル基が判別できる。

3−メチル−2−ブタノン(カルボニル化合物)

3−メチル−2−ブタノンのIRスペクトル(SDBSより引用)

分子にカルボニル基が含まれていると、1700 cm-1付近に鋭く強い吸収が現れる(水色でハイライト)。カルボニル基隣接位の構造によってこの位置は微妙にシフトするため、カルボニル付近の構造決定も行うことができる。共役型であればケト-エノール平衡のエノール型の存在比が大きくなり、それによって低波数側へシフトする。逆に隣接位に電子求引性基が存在すると高波数側へシフトする。

フェノール(アルコール、フェノール類)

フェノールのIRスペクトル(SDBSより引用)

このスペクトルの特徴は、3200 cm-1付近にある水酸基の幅広い吸収である(水色でハイライト)。フェノールの水酸基は元来鋭い吸収を示すが、分子間で複雑に水素結合をしている事情から幅広い吸収スペクトルを示している。希薄溶液にすることで鋭い吸収スペクトルを得ることができる。

おわりに

今回の話は、有機化学の実験を行おうとする学生の方々にとっては大変重要な話の一つだと思います。是非実験現場で、自分で作った分子・物質をいろいろ解析してみてください。やってみると面白いですよ!

(執筆 by ボンビコール, 2016/4/17 加筆修正 by cosine)
※本記事は以前より公開されていたものを加筆修正の上、ブログに移行したものです

関連書籍

関連リンク

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. フラーレン:発見から30年
  2. 化学Webギャラリー@Flickr 【Part5】
  3. プレプリントサーバー:ジャーナルごとの対応差にご注意を
  4. 第96回日本化学会付設展示会ケムステキャンペーン!Part II…
  5. 「一家に1枚」ポスターの企画募集
  6. リンダウ会議に行ってきた④
  7. キラルアニオン相関移動-パラジウム触媒系による触媒的不斉1,1-…
  8. 抗生物質の話

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. メルドラム酸 Meldrum’s Acid
  2. ウォルフ転位 Wolff Rearrangement
  3. 東レ先端材料シンポジウム2011に行ってきました
  4. DNAを切らずにゲノム編集-一塩基変換法の開発
  5. 相田 卓三 Takuzo Aida
  6. 3日やったらやめられない:独自配位子開発と応用
  7. できる研究者の論文生産術―どうすれば『たくさん』書けるのか
  8. シロアリの女王フェロモンの特定に成功
  9. NaHの水素原子の酸化数は?
  10. 君には電子のワルツが見えるかな

関連商品

注目情報

注目情報

最新記事

二重可変領域抗体 Dual Variable Domain Immunoglobulin

抗体医薬はリウマチやガンなどの難治性疾患治療に有効であり、現在までに活発に開発が進められてきた。…

サイエンスイングリッシュキャンプin東京工科大学

産業のグローバル化が進み、エンジニアにも国際的なセンスや語学力が求められているなか、東京工科大学(東…

特定の場所の遺伝子を活性化できる新しい分子の開発

ついにスポットライトリサーチも150回。第150回目は理化学研究所 博士研究員の谷口 純一 (たにぐ…

出光・昭和シェル、統合を発表

石油元売り2位の出光興産と4位の昭和シェル石油は10日、2019年4月に経営統合すると正式に発表した…

天然物の全合成研究ーChemical Times特集より

関東化学が発行する化学情報誌「ケミカルタイムズ」。年4回発行のこの無料雑誌の紹介をしています。…

「アジア発メジャー」狙う大陽日酸、欧州市場に参入

大陽日酸は北米に次ぐ成長が見込める欧州市場に参入を果たす。同業の米プラクスエアが欧州で展開する産業ガ…

Chem-Station Twitter

PAGE TOP