[スポンサーリンク]

一般的な話題

IRの基礎知識

[スポンサーリンク]

赤外吸収分光法(infrared absorption spectrometry, IR)とは、試料に赤外線をあてて得られる吸収スペクトルを測定する分析法である。とりわけ、有機化合物にどのような官能基が含まれるかを決定したい時に威力を発揮する。
今回はIRの原理から実例までを紹介しよう。

原理

原子同士の結合は硬く固定されているわけではなく、バネでつながれるかのように、ある程度の柔軟性をもっている。分子に赤外領域のエネルギーを与えると、化学結合(長さ・角度)の振動が生じる。このとき、吸収された赤外線エネルギー量を測定することで、化学結合の種類(官能基)を知ることができる。このため、およそ有機化合物と呼べるものは、すべからく赤外領域に固有の吸収スペクトルを持っている。

結合振動は、伸縮振動変角振動の二つに大別される。

IR_1

伸縮振動(左:対称振動 右:逆対称振動)

変角振動(左:横揺れ 中央左:はさみ 中央右:縦ゆれ 右:ひねり)

変角振動(左:横揺れ 中央左:はさみ 中央右:縦ゆれ 右:ひねり)  二重矢印は画面に対して垂直方向を示す。

この伸縮振動と変角振動のエネルギーはそれぞれ異なっている。つまり、一つの化学結合に対して、二種類のスペクトルが現れることになる。

測定装置

IR測定装置には原理毎に様々な種類があるが、現代の主流はフーリエ変換赤外分光分析(FT-IR)である。

日本分光製FT-IR装置(ホームページより引用)

日本分光製FT-IR装置(ホームページより引用)

FT-IRの装置は大まかに①光源、②干渉計、③試料室、④検出器、⑤解析用PCから構成される。

光源から出た赤外線は、半透鏡を用いて、2つの経路(反射光と透過光)に分離される。移動鏡を動かすことで一方の光路長が変わり、これが再合成されることで異なる干渉波(インターフェログラム)が得られる。この干渉波の向かう先に試料室を置き、サンプルを透過した光を検出し、PCで波数成分毎に分離(フーリエ解析)することによって、吸収スペクトルが得られる。

スリットを使わないため、光源エネルギーを有効活用でき、高感度に測定できるという特徴がある。また多数の波長を同時に測定できることも利点である。

 

解析方法

赤外吸収スペクトルの吸収は4000〜650 cm-1まで目盛られ、波数の大きいほうが高エネルギー側である。また、赤外吸収スペクトルでは吸光率を求めることはせず、相対的な強弱で表すのが一般的である。

強度 記号
very strong vs
strong s
mediam m
weak w
variable v
broad br

チャートの読み解きは、まずスペクトル全体を4000〜1500 cm-1と1500〜650 cm-1の二つの領域に分けて考える。

前者には伸縮振動による吸収のみが現れるので、比較的簡単なスペクトルとなる。官能基毎に決まった位置にピークが現れるため構造決定に有用である。大まかには高波数側から水素含有単結合→三重結合→二重結合の順に並んでいる。

後者には変角振動と単結合伸縮振動に由来する複雑な吸収スペクトルが現れ、概ね化合物固有のスペクトルが得られる。この領域は指紋領域と呼ばれる。

もう少し細かい手順を踏んで解析したい方は、以下のインストラクション画像に従ってみるといいだろう。

解析の実例

 

それでは実際に、以下の簡単な分子についてIRスペクトル解析をしてみよう。

IR_7

オクタン(脂肪族炭化水素)

オクタンのIRスペクトル(SDBSより引用)

オクタンは直鎖状炭化水素であるため、分子中には-CH3と-CH2-の二種類の官能基しか存在しない。吸収帯の数も少なく、はっきりしているため解析は簡単である。

 

トルエン(芳香族炭化水素)

トルエンのIRスペクトル(SDBSより引用)

トルエンはオクタンと比べると、少し複雑なスペクトルである。しかしピークははっきりしているため解析しやすい。このスペクトルでは1625〜1575 cm-1、1525〜1475 cm-1の2本の吸収より、芳香族C=Cが含まれている事がわかる。また729、696 cm-1の2本の吸収は芳香族一置換体を示している。2920 cm-1の存在から、トルエンのメチル基が判別できる。

3−メチル−2−ブタノン(カルボニル化合物)

3−メチル−2−ブタノンのIRスペクトル(SDBSより引用)

分子にカルボニル基が含まれていると、1700 cm-1付近に鋭く強い吸収が現れる(水色でハイライト)。カルボニル基隣接位の構造によってこの位置は微妙にシフトするため、カルボニル付近の構造決定も行うことができる。共役型であればケト-エノール平衡のエノール型の存在比が大きくなり、それによって低波数側へシフトする。逆に隣接位に電子求引性基が存在すると高波数側へシフトする。

フェノール(アルコール、フェノール類)

フェノールのIRスペクトル(SDBSより引用)

このスペクトルの特徴は、3200 cm-1付近にある水酸基の幅広い吸収である(水色でハイライト)。フェノールの水酸基は元来鋭い吸収を示すが、分子間で複雑に水素結合をしている事情から幅広い吸収スペクトルを示している。希薄溶液にすることで鋭い吸収スペクトルを得ることができる。

おわりに

今回の話は、有機化学の実験を行おうとする学生の方々にとっては大変重要な話の一つだと思います。是非実験現場で、自分で作った分子・物質をいろいろ解析してみてください。やってみると面白いですよ!

(執筆 by ボンビコール, 2016/4/17 加筆修正 by cosine)
※本記事は以前より公開されていたものを加筆修正の上、ブログに移行したものです

関連書籍

関連リンク

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 「不斉有機触媒の未踏課題に挑戦する」—マックス・プランク石炭化学…
  2. ヒドロアシル化界のドンによる巧妙なジアステレオ選択性制御
  3. イボレノリドAの単離から全合成まで
  4. 開催間近!ケムステも出るサイエンスアゴラ2013
  5. とある水銀化合物のはなし チメロサールとは
  6. 研究者よ景色を描け!
  7. 光触媒-ニッケル協働系によるシステイン含有ペプチドのS-アリール…
  8. システインから無機硫黄を取り出す酵素反応の瞬間を捉える

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 銀の殺菌効果がない?銀耐性を獲得するバシラス属菌
  2. [6π]光環化 [6π]Photocyclization
  3. フリーラジカルの祖は一体誰か?
  4. 有機合成化学協会誌2019年2月号:触媒的脱水素化・官能性第三級アルキル基導入・コンプラナジン・アライン化学・糖鎖クラスター・サリチルアルデヒド型イネいもち病菌毒素
  5. 大学院講義 有機化学
  6. whileの使い方
  7. LG化学がグローバルイノベーションコンテストを開催へ
  8. コケに注目!:薬や香料や食品としても
  9. シクロクラビン cycloclavine
  10. 二酸化炭素をはきだして♪

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

第8回慶應有機化学若手シンポジウム

ご案内有機合成・反応化学、天然物化学・ケミカルバイオロジー、生物 有機化学・医化学、有機材料化学…

第141回―「天然と人工の高分子を融合させる」Sébastien Perrier教授

第141回の海外化学者インタビューはセバスチャン・ペリエ教授です。シドニー大学化学科(訳注:現在はワ…

合格体験記:知的財産管理技能検定~berg編~

私(berg)が2019(令和元)年11月17日(日)に受験した3級(第34回)の記録です。現状とは…

ゼロから学ぶ機械学習【化学徒の機械学習】

hodaです。機械学習に興味があります。突然ですが読者の皆さんは第13回ケムステVシンポジウム「…

研究助成金及び海外留学補助金募集:公益財団法人アステラス病態代謝研究会

2021年度が始まりました。悪い予想通り、コロナの影響は続き今年も自由に動けませんね。そんななかでも…

【マイクロ波化学(株)医薬分野向けウェビナー】 #ペプチド #核酸 #有機合成 #凍結乾燥 第3のエネルギーがプロセスと製品を変える  マイクロ波適用例とスケールアップ

<内容>本イベントは、医薬分野向けに事業・開発課題のソリューションとして、マイクロ波の適用例や効…

含フッ素カルボアニオン構造の導入による有機色素の溶解性・分配特性の制御

第305回のスポットライトリサーチは、東京薬科大学大学院 薬学研究科(松本・矢内研究室)・干川翔貴さ…

【書籍】機器分析ハンドブック3 固体・表面分析編

2021/3/31に刊行されたばかりのホットな書籍をご紹介します。(↓kindle版…

Chem-Station Twitter

PAGE TOP