[スポンサーリンク]

chemglossary

蛍光異方性 Fluorescence Anisotropy

[スポンサーリンク]

[latexpage]

蛍光異方性(fluorescence anisotropy)とは溶液中で回転する分子の回転速度を割り出す分光法である。一定温度において回転速度は分子の大きさ(重さ)と深い関わりがあるため、回転速度から流体力学半径を計算することができる。化学の分野では化合物が複合体を形成した、または分解したときに流体力学半径の変化を調べることで間接的にその大きさの変化を見ることが可能になる。

 

概要

蛍光を示す分子に光を照射すると励起状態に達してやがて発光することはよく知られている事実だが、発光体は遷移双極子モーメントに沿った方向の偏光をよく吸収し、やがて発光の遷移双極子モーメントの方向の偏光を放出して失活する。S0→S1の励起であれば吸収と発光の遷移双極子モーメントは平行であるため、静止している分子の場合は入射光と同じ方向に偏光した蛍光を放出する。しかし、一般に溶液中の分子は溶媒からの衝突によって回転運動しているため、励起状態にいる間に遷移モーメントも回転し、蛍光は入射光と異なる偏光になる。

具体的に異方性$r$は次のパラメーターで表される。
\begin{equation} r = \frac{I_{VV} – GI_{VH}}{I_{VV} + 2GI_{VH}} \end{equation}
\begin{equation} G = \frac{I_{HV}}{I_{HH}} \end{equation}
$G$はグレーティングファクターと呼ばれる機器に固有の補正項である。$I_{VV}$は入射したverticalな偏光に対する蛍光のverticalな成分であり、$I_{VH}$は入射したverticalな偏光に対する蛍光のhorizontalな成分である。異方性$r$の分母は発光の全強度を表し、分子は発光がどの程度偏光しているかを表す。仮に分子が蛍光寿命に対して高速に回転していれば異方性$r$は0に近づき、逆に、回転速度がそれほど早くなければ異方性$r$は正の値をとる。

実験によって得られた蛍光異方性$r$と蛍光寿命$\tau$から回転相関時間$\theta$(回転速度に対応する)を次の式で計算することができる。
\begin{equation} \theta = \frac{r}{r_0 – r}\tau \end{equation}
ここで$r_0$、$r$はそれぞれ静止状態での蛍光異方性と測定された蛍光異方性である。さらに、回転相関時間$\theta$から流体力学半径$r_h$が計算される。
\begin{equation} \theta = \frac{\eta{V}}{k_BT} = \frac{4\pi\eta{r_h}^3}{3k_BT} \end{equation}
$\eta$、$V$、$k_B$、$T$はそれぞれ溶媒の粘性、分子の体積、ボルツマン定数、ケルビン温度である。流体力学半径は分子または複合体を剛体球とみなしたときの半径で、大きさに対応するパラメーターである。以上のようにして蛍光異方性の測定から分子の大きさを見積もることが可能である。

多くの場合で蛍光異方性$r$が正の値をとることを述べたが、これは吸収と発光の遷移双極子モーメントが平行に近い場合である。稀な例だが、吸収の遷移双極子モーメントと発光の遷移双極子モーメントの角度が直角に近いとき、蛍光異方性$r$は負の値をとる。下図の左はCRYPという分子がCB7という環状のホストやDNAと複合体を作っているときの蛍光異方性の時間変化を調べたものである。遊離のCRYPも複合体中のCRYPも蛍光異方性は負の数値になっている。励起パルス光の波長は375 nmで、この場合S0→S2の励起に近い。一方、発光過程までにS2はS1まで振動緩和されるため発光はS1→S0になる。この吸収と発光の遷移双極子モーメントは下図の右にあるように別の方向であり、(1)式に従うと蛍光異方性$r$は負の値になる。

[1]より

化学・生命科学への応用

蛍光異方性は先にも述べたように生体分子などの比較的大きな分子やその集合体に対して適応される。なぜならある程度大きい系でなければ蛍光寿命と回転相関係数の桁が同程度にならないからだ。回転相関係数に対して蛍光寿命が長すぎると回転が相対的に速くなるので蛍光異方性$r$は0に近い値をとる。蛍光異方性には様々なパラメーターが関係しているため、分子の大きさだけでなく、蛍光体を生体膜に埋め込んで生体膜内部の粘性を調べたり、タンパク質は高次構造が破壊されると直鎖に近づき球体力学半径が変化するためタンパク質が失活する過程を調べたりすることができる。

定常状態の蛍光異方性ダイヤグラムの例。Dansyl-cortisolがポリマーと複合体を形成しているのがわかる。 [2]より

参考文献

  1. R. K. Koninti; S. Sappati; S. Satpathi; K. Gavvala; P. Hazra, Chemphyschem, 2016, 17, 506-515. DOI:10.1002/cphc.201501011
  2. Murase, N.; Taniguchi, S.; Takano, E.; Kitayama, Y.; Takeuchi, T. J. Mater. Chem. B, 2016, 4, 1770-1777. DOI:10.1039/C5TB02069G

関連書籍

関連リンク

 

ferrum

投稿者の記事一覧

自称化学者(科学者)のタマゴ。興味はざっくりと物理と化学の境界分野。

関連記事

  1. Imaging MS イメージングマス
  2. ランタノイド Lanthanoid
  3. 水分解 water-splitting
  4. 超臨界流体 Supercritical Fluid
  5. トランス効果 Trans Effect
  6. メソリティック開裂 mesolytic cleavage
  7. 生物学的等価体 Bioisostere
  8. 光学分割 / optical resolution

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 普通じゃ満足できない元素マニアのあなたに:元素手帳2016
  2. Carl Boschの人生 その8
  3. 令和元年度 のPRTR データが公表~第一種指定化学物質の排出量・移動量の集計結果~
  4. 世界最大級のマススペクトルデータベース「Wiley Registry」
  5. ディーター・ゼーバッハ Dieter Seebach
  6. 最新有機合成法: 設計と戦略
  7. 炭素 Carbon -生物の基本骨格、多様な同素体
  8. コルベ電解反応 Kolbe Electrolysis
  9. N-ヘテロ環状カルベン / N-Heterocyclic Carbene (NHC)
  10. 『元素周期 ~萌えて覚える化学の基本~』がドラマCD化!!!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年8月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

注目情報

最新記事

松田 豊 Yutaka Matsuda

松田 豊(まつだゆたか, 1985年07月04日-)は、抗体薬物複合体(ADC)の製造技術を開発して…

化学産業のサプライチェーンをサポートする新しい動き

長瀬産業株式会社、ナガセ情報開発株式会社は、2023年2月1日より、化学品ドキュメントの配付管理ツー…

シクロデキストリンの「穴の中」で光るセンサー

第468回のスポットライトリサーチは、上智大学理工学部 物質生命理工学科 分析化学研究グループ(早下…

Excelでできる材料開発のためのデータ解析[超入門]-統計の基礎や機械学習との違いを解説-

 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影響を受け、従来の経験と勘によ…

超原子価ヨウ素反応剤を用いたジアミド類の4-イミダゾリジノン誘導化

第468回のスポットライトリサーチは、岐阜薬科大学  合成薬品製造学研究室(伊藤研究室)に所属されて…

研究室でDIY!ELSD検出器を複数のLCシステムで使えるようにした話

先日のBiotage Selekt + ELSDの記事でちらっと紹介した、ELS…

第37回ケムステVシンポ「抗体修飾法の最前線 〜ADC製造の基盤技術〜」を開催します!

修論・卒論・博士論文で大忙しの2,3月ですが、皆さんいかがお過ごしでしょうか。まとめ作業とデスク…

有機合成化学協会誌2023年1月号:[1,3]-アルコキシ転位・クロロシラン・インシリコ技術・マイトトキシン・MOF

有機合成化学協会が発行する有機合成化学協会誌、2023年1月号がオンライン公開されました。す…

飲む痔の薬のはなし1 ブロメラインとビタミンE

Tshozoです。あれ(発端記事・その後の記事)からいろいろありました。一進一退とはいえ、咀…

深紫外光源の効率を高める新たな透明電極材料

第467回のスポットライトリサーチは、東京都立大学大学院 理学研究科 廣瀬研究室の長島 陽(ながしま…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP