[スポンサーリンク]

chemglossary

蛍光異方性 Fluorescence Anisotropy

[スポンサーリンク]

蛍光異方性(fluorescence anisotropy)とは溶液中で回転する分子の回転速度を割り出す分光法である。一定温度において回転速度は分子の大きさ(重さ)と深い関わりがあるため、回転速度から流体力学半径を計算することができる。化学の分野では化合物が複合体を形成した、または分解したときに流体力学半径の変化を調べることで間接的にその大きさの変化を見ることが可能になる。

 

概要

蛍光を示す分子に光を照射すると励起状態に達してやがて発光することはよく知られている事実だが、発光体は遷移双極子モーメントに沿った方向の偏光をよく吸収し、やがて発光の遷移双極子モーメントの方向の偏光を放出して失活する。S0→S1の励起であれば吸収と発光の遷移双極子モーメントは平行であるため、静止している分子の場合は入射光と同じ方向に偏光した蛍光を放出する。しかし、一般に溶液中の分子は溶媒からの衝突によって回転運動しているため、励起状態にいる間に遷移モーメントも回転し、蛍光は入射光と異なる偏光になる。

具体的に異方性rは次のパラメーターで表される。

(1)   \begin{equation*} r = \frac{I_{VV} - GI_{VH}}{I_{VV} + 2GI_{VH}} \end{equation*}

(2)   \begin{equation*} G = \frac{I_{HV}}{I_{HH}} \end{equation*}

Gはグレーティングファクターと呼ばれる機器に固有の補正項である。I_{VV}は入射したverticalな偏光に対する蛍光のverticalな成分であり、I_{VH}は入射したverticalな偏光に対する蛍光のhorizontalな成分である。異方性rの分母は発光の全強度を表し、分子は発光がどの程度偏光しているかを表す。仮に分子が蛍光寿命に対して高速に回転していれば異方性rは0に近づき、逆に、回転速度がそれほど早くなければ異方性rは正の値をとる。

実験によって得られた蛍光異方性rと蛍光寿命\tauから回転相関時間\theta(回転速度に対応する)を次の式で計算することができる。

(3)   \begin{equation*} \theta = \frac{r}{r_0 - r}\tau \end{equation*}

ここでr_0rはそれぞれ静止状態での蛍光異方性と測定された蛍光異方性である。さらに、回転相関時間\thetaから流体力学半径r_hが計算される。

(4)   \begin{equation*} \theta = \frac{\eta{V}}{k_BT} = \frac{4\pi\eta{r_h}^3}{3k_BT} \end{equation*}

\etaVk_BTはそれぞれ溶媒の粘性、分子の体積、ボルツマン定数、ケルビン温度である。流体力学半径は分子または複合体を剛体球とみなしたときの半径で、大きさに対応するパラメーターである。以上のようにして蛍光異方性の測定から分子の大きさを見積もることが可能である。

多くの場合で蛍光異方性rが正の値をとることを述べたが、これは吸収と発光の遷移双極子モーメントが平行に近い場合である。稀な例だが、吸収の遷移双極子モーメントと発光の遷移双極子モーメントの角度が直角に近いとき、蛍光異方性rは負の値をとる。下図の左はCRYPという分子がCB7という環状のホストやDNAと複合体を作っているときの蛍光異方性の時間変化を調べたものである。遊離のCRYPも複合体中のCRYPも蛍光異方性は負の数値になっている。励起パルス光の波長は375 nmで、この場合S0→S2の励起に近い。一方、発光過程までにS2はS1まで振動緩和されるため発光はS1→S0になる。この吸収と発光の遷移双極子モーメントは下図の右にあるように別の方向であり、(1)式に従うと蛍光異方性rは負の値になる。

[1]より

化学・生命科学への応用

蛍光異方性は先にも述べたように生体分子などの比較的大きな分子やその集合体に対して適応される。なぜならある程度大きい系でなければ蛍光寿命と回転相関係数の桁が同程度にならないからだ。回転相関係数に対して蛍光寿命が長すぎると回転が相対的に速くなるので蛍光異方性rは0に近い値をとる。蛍光異方性には様々なパラメーターが関係しているため、分子の大きさだけでなく、蛍光体を生体膜に埋め込んで生体膜内部の粘性を調べたり、タンパク質は高次構造が破壊されると直鎖に近づき球体力学半径が変化するためタンパク質が失活する過程を調べたりすることができる。

定常状態の蛍光異方性ダイヤグラムの例。Dansyl-cortisolがポリマーと複合体を形成しているのがわかる。 [2]より

参考文献

  1. R. K. Koninti; S. Sappati; S. Satpathi; K. Gavvala; P. Hazra, Chemphyschem, 2016, 17, 506-515. DOI:10.1002/cphc.201501011
  2. Murase, N.; Taniguchi, S.; Takano, E.; Kitayama, Y.; Takeuchi, T. J. Mater. Chem. B, 2016, 4, 1770-1777. DOI:10.1039/C5TB02069G

関連書籍

関連リンク

 

ferrum

投稿者の記事一覧

自称化学者(科学者)のタマゴ。興味はざっくりと物理と化学の境界分野。

関連記事

  1. 液体キセノン検出器
  2. ビオチン標識 biotin label
  3. 全合成 total synthesis
  4. シュテルン-フォルマー式 Stern-Volmer equat…
  5. 合成化学者のための固体DNP-NMR
  6. 徹底比較 特許と論文の違い ~明細書、審査編~
  7. シュレンクフラスコ(Schlenk flask)
  8. アルカロイド alkaloid

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 大量合成も可能なシビれる1,2-ジアミン合成法
  2. フルオラス向山試薬 (Fluorous Mukaiyama reagent)
  3. Google日本語入力の専門用語サジェストが凄すぎる件:化学編
  4. トヨタ、世界初「省ネオジム耐熱磁石」開発
  5. エステルを使った新しいカップリング反応
  6. 研究者のためのCG作成術①(イントロダクション)
  7. 2010年ノーベル化学賞ーお祭り編
  8. 炭素原子のまわりにベンゼン環をはためかせる
  9. 東レ工場炎上2人重傷 名古屋
  10. 住友化学、イスラエルのスタートアップ企業へ出資 ~においセンサーを活用した新規ヘルスケア事業の創出~

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

非古典的カルボカチオンを手懐ける

キラルなブレンステッド酸触媒による非古典的カルボカチオンのエナンチオ選択的反応が開発された。低分子触…

CEMS Topical Meeting Online 機能性材料の励起状態化学

1月28日に毎年行われている理研の無料シンポジウムが開催されるようです。事前参加登録が必要なので興味…

カルボン酸に気をつけろ! グルクロン酸抱合の驚異

 カルボン酸は、カルボキシ基 (–COOH) を有する有機化合物の一群です。カルボン…

第138回―「不斉反応の速度論研究からホモキラリティの起源に挑む」Donna Blackmond教授

第138回の海外化学者インタビューはドナ・ブラックモンド教授です。2009年12月現在、インペリアル…

Ru触媒で異なるアルキン同士をantiで付加させる

Ru触媒を用いたアルキンのanti選択的ヒドロおよびクロロアルキニル化反応が開発された。本反応は共役…

化学系必見!博物館特集 野辺山天文台編~HC11Nってどんな分子?~

bergです。突然ですが今回から「化学系必見!博物館特集」と銘打って、私が実際に訪れたいちおしの博物…

有機合成化学協会誌2021年1月号:コロナウイルス・脱ニトロ型カップリング・炭素環・ヘテロ環合成法・環状γ-ケトエステル・サキシトキシン

有機合成化学協会が発行する有機合成化学協会誌、2021年1月号がオンライン公開されました。あ…

第137回―「リンや硫黄を含む化合物の不斉合成法を開発する」Stuart Warren教授

第137回の海外化学者インタビューはスチュアート・ウォーレン教授です。ケンブリッジ大学化学科に所属し…

Chem-Station Twitter

PAGE TOP