[スポンサーリンク]

化学者のつぶやき

サリンを検出可能な有機化合物

オウム真理教テロ事件で大々的に使われ、化学に対するイメージに大きな陰を落としてしまった神経ガス・サリン。超高毒性に加えて無味無臭のため、一旦使われてしまうと人間の反応を見ない限り分からないという極悪な代物だったりします。

しかし化学者側も、脅威を作りっぱなしで終わっているワケではありません。こういった神経ガスを好感度で検出すべく、有機化学分野からのアプローチが近年報告されています。

今回はサリン存在下に蛍光を発する分子[1]についての研究をいくつかご紹介しましょう。

 

今回紹介するどの分子にしても、サリンと反応して分子構造が変化し、それによって分子蛍光パターンが変化することが、検出の基本原理となっています。

 

ちなみに、本物のサリンを使って((((;゚Д゚))))ガクガクブルブル! な実験をしてるかというと、流石にそうではないようです。似た反応性を持ちながらも、毒性の低いジエチルクロロリン酸(DCP)、ジイソプロピルフルオロリン酸(DFP)というモデル化合物があって、それを使ってデータをとってる模様。

・・・まぁ、そりゃあそうですよね。筆者もサリンみたいな恐ろしいもの、どんなに頼まれて金を積まれても近づきたくありませんし・・・。

 

さてさて、このような分子設計アプローチに道をつけたのは、1998年のPilatoらによる報告[2]です。

 

sarin_detector_1.gif

 

ピリジル基・ヒドロキシル基を近傍に併せ持つ上記の様な白金錯体は、DFPと反応することで分子内環化を起こし、ピリジニウム塩を形成します。この形になると、分子が蛍光を発するようになります。つまりこういった分子構造特有の反応性・蛍光性を利用して、神経ガスを検出できるのでは?というコンセプトを提示した研究なのです。

 

後にMITのSwagerラボからも、類似の原理によってDFPを蛍光検出できる化合物が報告[3]されています。こちらのほうがより簡単な分子構造になっているうえ、価格や適用範囲・蛍光強度・応答速度などの観点で、より改善されたものとなっているようです。実際、この化合物はわずか10ppm程度のDFPでも検出が可能とのこと。

 

sarin_detector_2.gif

 

両者ともDFP(DCP)と反応することで、二つの環を結ぶ結合の自由回転が阻害され、共役系が固定化されるということが、蛍光挙動変化を理解するためのキーポイントとなっています。

もう一つの例として、2006年にスクリプス研究所のRebekラボから報告された化合物[4]を紹介します。

sarin_detector_3.gif

 

DCPと反応して蛍光挙動が変化する、という点は同じなのですが、その理屈がやや異なっています。

この場合には、DCPとは反応しない蛍光団が別途用意されています。蛍光団と反応点は、スペーサー(アルキル鎖)を介してつながっています。

 

DCPと反応する前の構造では、励起光を当てるとアミン電子対からの光誘起電子移動(Photo-induced Electron Transfer;PET)が優先するようになっています。このため消光が起き、蛍光は発生しません。しかし一旦DCPが反応すると、その電子対が環形成に使われてしまうためにPETが起こらなくなり、蛍光を発するようになると言うわけです。

このコンセプトに依れば、適用可能な蛍光団の種類を増やすことが出来、またスペーサーなどの精密チューニングによって感度の向上も期待することができます。より一般性高く、一段と洗練されたアイデアになっています。

 

いずれの例でも、サリンの求核剤に対する反応性と、反応後の脱離能の高さをうまく利用した分子設計になっているのが特徴ですね。しかし原理上、繰り返し使うことが難しい、という難点はありますが・・・。今後の研究によって、更なる改善がもたらされることを期待します。

化学物質の危険性ばかりがクローズアップされがちな昨今ですが、こういった「安全を守る技術開発」にも、化学者は真剣に取り組んでいるわけです。そういった健全な取り組みを大きく取り上げることが少ない風潮は、やや残念なことに思えます。

 

進歩した化学技術がもたらす未知の危険への対抗手段は、また、化学技術の発展しかありえないのです。 化学技術の恩恵なしに生活できない我々は、安直に感情論に走らず、そのことを常に念頭に置いて考える必要があるでしょう。

関連文献

  1. Review: (a) Burnworth, M.; Rowan, S. J.; Weder, C. Chem. Eur. J. 2007, 13, 7828. doi: 10.1002/chem.200700720 (b) Royo, S.; Martinez-Manez, R.; Sancenon, F.; Costero, A. M.; Parra, M.; Gil. S. Chem. Commun. 2007, 4839. doi:10.1039/b707063b
  2.  Van Houten, K. A.; Heath, D. C.; Pilato, R. S.  J. Am. Chem.Soc. 1998, 120, 12359.
  3. Zhang, S.-W.; Swager, T. M. J. Am. Chem. Soc. 2003, 125, 3420. doi:10.1021/ja029265z
  4. Dale, T. J.; Rebek, J., Jr. J. Am. Chem. Soc. 2006, 128, 4500. doi:10.1021/ja057449i

 

関連リンク

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. なぜ青色LEDがノーベル賞なのか?ー性能向上・量産化編
  2. カーボンナノチューブをふりかえる〜Nano Hypeの狭間で
  3. ダイヤモンドは砕けない
  4. 銀を使ってリンをいれる
  5. 紫外線に迅速応答するフォトクロミック分子
  6. PL法 ? ものづくりの担い手として知っておきたい法律
  7. ノーベル賞化学者と語り合おう!「リンダウ・ノーベル賞受賞者会議」…
  8. Dead Endを回避せよ!「全合成・極限からの一手」⑥

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 【朗報】HGS分子構造模型が入手可能に!
  2. 信越化学、塩化ビニル樹脂を値上げ
  3. シュタウディンガー ケテン環化付加 Staudinger Ketene Cycloaddition
  4. ビジネスが科学を待っている ー「バイオ」と「脱炭素」ー
  5. アルバート・コットン Frank Albert Cotton
  6. カーボンナノベルト合成初成功の舞台裏 (3) 完結編
  7. 生体深部イメージングに有効な近赤外発光分子の開発
  8. アダム・コーエン Adam E. Cohen
  9. ザンドマイヤー反応 Sandmeyer Reaction
  10. 井口 洋夫 Hiroo Inokuchi

関連商品

注目情報

注目情報

最新記事

博士後期で学費を企業が肩代わり、北陸先端大が国内初の制度

 北陸先端科学技術大学院大学は、産業界と連携した博士人材の育成制度を2019年度から開始する。企業が…

有機ホウ素化合物を用いたSNi型立体特異的β-ラムノシル化反応の開発

第166回目のスポットライトリサーチは、慶應義塾大学理工学部博士課程・西 信哉(にし のぶや)さんに…

アルキルアミンをボロン酸エステルに変換する

不活性C(sp3)–N結合をボリル化する初めての反応が開発された。入手容易なアルキルアミンから様々な…

生物の仕組みに倣う:背景と光に応じて色が変わる顔料の開発

第165回目のスポットライトリサーチは、名古屋大学大学院工学研究科 ・坂井美紀(さかい みき)さんに…

イミデートラジカルを用いた多置換アミノアルコール合成

イミデートラジカルを用い、一挙に多置換アミノアルコールを合成する方法が開発された。穏和な条件かつ位置…

ジェフリー·ロング Jeffrey R. Long

ジェフリー·ロング(Jeffrey R. Long, 1969年xx月xx日-)は、アメリカの無機材…

PAGE TOP