[スポンサーリンク]

chemglossary

抗体触媒 / Catalytic Antibody

[スポンサーリンク]

触媒はそれ自身変化しないが、化学反応の仲立ちとなって、反応速度を速めたり遅らせたりする物質である。とくに生物の免疫機構によって生成される抗体が触媒として働くとき、それを抗体触媒(Catalytic Antibody)と呼称する[1]。現在ではAbzymeと呼ばれることもある。

歴史

1948年Linus Paulingは、 自らの「鍵と鍵穴」理論、すなわち「酵素は触媒する反応の遷移状態アナログに相補的な分子である」という仮説[2]を提示した。

これに沿う形で1969年Wjlliam P. Jenckshは、「反応の遷移状態アナ ログをハプテンと して得 られた抗体の結合部位は、酵素と同様に反応を加速する」とい う理論を提唱した[3]。しかし、モノクローナル抗体製造技術の未成熟さなどを背景に、この考え方は長らく進歩を見せなかった。

1986年にPeter SchultzRichard Lernerのグループにより、抗体が化学反応を触媒できることが世界で初めて示された[4]。

この報告を契機に、抗体触媒は幅広い分野の科学者の注目を集めた。

原理

上述の通り抗体触媒は、酵素と同様、反応遷移状態を安定化させる(反応の活性化エネルギーを下げる)ということが駆動原理となっている。

すなわち化学反応の遷移状態模倣分子をデザインし、それをハプテンとした抗原をマウスへ投与、モノクローナル抗体を免疫応答によってつくりだす。こうして得られた抗体が触媒として機能する。このハプテンとしては例えば、エステル加水分解反応に対してはリン酸などが汎用されている。

画像はこちらより引用

画像はこちらより引用

反応ごとに適切なハプテンをデザインできれば、原理的にはどのような化学反応でも対応する抗体触媒が製造可能なはずであるため、オーダーメイド人工触媒を生み出す一般手法になると当時は考えられた。

有機合成への利用

Barbas、Lernerらは、1995年にアルドール反応を触媒する抗体触媒を作製した[5]。代表的な抗体触媒38C2、33F12の結果を以下に示す。抗体とβジケトンから形成されるエナミンを遷移状態模倣として捉えている。

余談であるが、ここから得られた発想が、後のプロリン有機触媒という世界的ブレイクスルーに結びついている。

画像はこちらより引用

画像はこちらより引用

38C2が触媒するアルドール反応(画像はこちらより引用)

38C2が触媒するアルドール反応とその応用(画像はこちらより引用)

問題点

コンセプトは優れているが現実的に数多くの問題があるため、物質製造目的にはこれまでほとんど実用されていない。

  • 抗体は免疫応答を利用して製造されるため、スクリーニング・最適化に多くの時間がかかる
  • 大量の抗体を得ることが困難である
  • 抗体の分子量が大きいため、反応を行う際には基質に比して大量用いなければならない
  • 抗体が変性しない条件(通常は生理的条件)を越境した条件を使うことができない
  • 特定の反応を除き、触媒活性がさほど高くない

医薬応用を見据えた取り組み

近年の抗体医薬台頭の潮流を受け、抗体触媒概念は再注目を集める可能性がある。以下はコカインを加水分解して無毒化する抗体触媒のデザインである[6]。

catalytic_antibody_2

 

 (※以前より公開されていた記事を加筆修正し、ブログに移行したものです)

関連文献

  1. Review: (a) Shokat, K. M.; Shultz, P. G. Ann. Rev. Immunol. 1990, 8, 335. DOI: 10.1146/annurev.iy.08.040190.002003 (b) 池田昇司, Kim D. Janda, 有機合成化学協会誌, 1993, 51, 284. doi:10.5059/yukigoseikyokaishi.51.284 (c) Schultz, P. G.; Lerner, E. A. Science 1995, 269, 1835. DOI: 10.1126/science.7569920 (d)藤井 郁雄, 円谷 健, 化学と生物 1998, 36, 778. doi:10.1271/kagakutoseibutsu1962.36.778
  2. Pauling, L. Am. Sci. 194836, 51.
  3. Jencks, W. Catalysis in Chemistry andEnzymology, McGraw-Hill, New York , 1969, p.288
  4. (a) Pollack, S. J.; Jacobs, J. W.; Schultz, P. G. Science 19862341570–1573. DOI: 10.1126/science.3787262 (b) Tramontano, A.; Janda, K. D.; Lerner, R. A.  Science 19862341566–1570. DOI:10.1126/science.3787262
  5. (a) Wagner, J.; Lerner, R.; Barbas, C., III, Science 1995, 270, 1797. DOI: 10.1126/science.270.5243.1797 (b) Barbas,C., III,; Heine, A.; Zhong, G.; Hoffmann, T.; Gramatikova, S.; Bjornestedt, R.; List, B.; Anderson, J.; Stura, E.; Wilson, I.; Lerner, R. Science 1997, 278, 2085. DOI: 10.1126/science.278.5346.2085 (c) Hoffmann, T.; Z hong, G.; List, B.; Shabat, D.; Anderson, J.; Gramatikova, S.; Lerner, R.; Barbas, C., III,  J. Am. Chem. Soc. 1998, 120, 2768. DOI: 10.1021/ja973676b
  6. Deng, S. X.; de Prada, P.; Landry, D. W. J. Immunol. Methods, 2002269, 299. doi:10.1016/S0022-1759(02)00237-5

関連書籍

関連リンク

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 有機触媒 / Organocatalyst
  2. メタンハイドレート Methane Hydrate
  3. 抗体-薬物複合体 Antibody-Drug Conjugate…
  4. Process Mass Intensity, PMI(プロセス…
  5. 動的コンビナトリアル化学 Dynamic Combinatori…
  6. ソーレー帯 (Soret band) & Q帯 (Q …
  7. レドックスフロー電池 Redox-Flow Battery, R…
  8. ランタノイド Lanthanoid

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 【日本精化】新卒採用情報(2023卒)
  2. 分子模型を比べてみた
  3. イオン液体のリチウムイオン電池向け電解液・ ゲル電解質への応用【終了】
  4. トリフルオロメタンスルホン酸トリエチルシリル : Triethylsilyl Trifluoromethanesulfonate
  5. ポンコツ博士の海外奮闘録⑨ 〜博士,Yosemiteに行く〜
  6. 市販の化合物からナノグラフェンライブラリを構築 〜新反応によりナノグラフェンの多様性指向型合成が可能に〜
  7. 第47回―「ロタキサン・カテナン・クラウンエーテルの超分子化学」Harry Gibson教授
  8. トリプトファン選択的なタンパク質修飾反応の開発
  9. 新規抗生物質となるか。Pleuromutilinsの収束的短工程合成
  10. 菌・カビを知る・防ぐ60の知恵―プロ直伝 防菌・防カビの新常識

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年2月
1234567
891011121314
15161718192021
22232425262728
29  

注目情報

注目情報

最新記事

【速報】2022年ノーベル化学賞は「クリックケミストリーと生体直交化学」へ!

2022年のノーベル化学賞は「クリックケミストリーと生体直交化学」の開発業績で、バリー・シャープレス…

in-situ放射光X線小角散実験から明らかにする牛乳のナノサイエンス

第425回のスポットライトリサーチは、高エネルギー加速器研究機構 物質構造科学研究所(物構研)の高木…

アセトアミノフェン Acetaminophen

 アセトアミノフェン (acetaminophen) は、有機化合物の一つ。海外ではパラセタ…

不安定な高分子原料を従来に比べて 50 倍安定化することに成功! ~水中での化学反応・材料合成に利用可能、有機溶媒の大幅削減による脱炭素に貢献~

第424回のスポットライトリサーチは、京都工芸繊維大学大学院工芸科学研究科 バイオベースマテリアル学…

【10月開催】マイクロ波化学ウェブセミナー

<内容>今月もテーマを分けて2回開催いたします。第一…

越野 広雪 Hiroyuki Koshino

越野 広雪(こしの ひろゆき)は、NMRやマススペクトルなどのもとにした有機分子の構造解析を専門とす…

bassler ボニー・L.・バスラー Bonnie L. Bassler

ボニー・L.・バスラー (Bonnie Lynn Bassler , 1962年XX月XX日-)は、…

電子を閉じ込める箱: 全フッ素化キュバンの合成

第 423 回のスポットライトリサーチは、東京大学 工学系研究科 化学生命工学専…

プラズモンTLC:光の力でナノ粒子を自在に選別できる新原理クロマトグラフィー

第422回のスポットライトリサーチは、名古屋大学 大学院工学研究科 鳥本研究室の秋吉 一孝 (あきよ…

マテリアルズ・インフォマティクスの基礎知識とよくある誤解

開催日:2022/10/04 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP