[スポンサーリンク]

ケムステニュース

オルト−トルイジンと発がんの関係

[スポンサーリンク]

 発がん性が指摘される化学物質「オルト−トルイジン」を扱う福井県の化学工場で従業員ら5人がぼうこうがんを発症した問題で、厚生労働省は22日、他にも4工場の6人が発症していたと発表した。ただ、業務の状況などからオルト−トルイジンが原因になった可能性は低いという。会社や工場名について厚労省は「6人の特定につながるため公表できない」としている。

 厚労省はこれまでに同じ物質を扱ったり、扱った可能性があったりする会社の63工場に対し、従業員や退職者がぼうこうがんを発症していないかを聞き取り調査した。その結果、現在も同じ物質を扱っている2工場で2人の発症を確認した。この2工場では液体状の化学製品を作る工程で少量のオルト−トルイジンが排出され、発症した2人は製品のサンプル調査を担当していた。しかし、製品を作る容器は密閉され、ばく露の機会は少なかったという(引用:毎日新聞 2016年1月22日)。

昨年末から悪い意味で賑わせている化合物「オルトートルイジン」。福井県の工場の話は限りなくクロに近そうですが、他の工場の関連性はまだわかっていません。化学の情報を取扱う化学サイトとしては、一般的に化学でつくったものってあんまり良いイメージがなく、こういう話があると「化学物質=危険」が独り歩きするので、ちょっと避けたい気持ちも山々です。しかし、もちろん危険なものもたくさんあるので今回は参考情報としてお伝えしたいと思います。

では、話題になっている「オルトートルイジン」から説明しましょう。

オルト−トルイジンとは?

 化学が好きな読者にはいまさら説明するまでも無いで、知っている方は読み飛ばしてください。

オルトートルイジン(o-toluidine)は「芳香族アミン」というベンゼン環にアミノ基(ーNH2)をもった化合物の一種です。高校の化学ならばアニリンが習うとろこでしょう。そのアニリンに炭素(メチル基CH3)が1つついたものが、トルイジンです。

ベンゼン環のどこにつくかによって、名前が変わり、オルト(o-)、メタ(m-)、パラ(p-)という3種類の位置をもつ異性体が存在します。そのなかでオルト位に付いているものがオルトートルイジンです。

2016-01-23_03-47-06

芳香族アミンはやばいものがある

 オルトートルイジンを含む、芳香族アミンのなかには発がん性が指摘されている化合物があります(全てでないことに注意)。それを特定芳香族アミンといい以下の24種の化学構造を持った特定芳香族アミンは使用が規制されています。例えば、かつて繊維工場の従業員に膀胱がんが多発し(今回と似てますね)、その原因物質として同定された、2-ナフチルアミンなどが含まれています。

規制対象の特定芳香族アミン類 (出典:BOKEN 特定芳香族アミン試験について)

規制対象の特定芳香族アミン類 (出典:BOKEN 特定芳香族アミン試験について)

さらに、2015年4月8日に、有害な化合物の家庭用品への使用を規制する「有害物質を含有する家庭用品の規制に関する法律」にて、上記の特定芳香族アミンが発生する可能性のある(必ず発生するわけではありません)、アゾ化合物の使用が規制されています。特に体に触れる製品に関しては基準値を下回る必要があります。

なぜ芳香族アミンがやばいのか?

ではなぜ、芳香族アミンがやばいのか?それはDNAを損傷(化学反応)するからです。ここからは少し専門的になりますが、DNAの核酸塩基は一般的に求核剤。攻撃する側です。攻撃される側、つまり求電子剤があれば、DNAが攻撃して修飾され、化学反応が進行し、損傷します。ただし、かなり強い求電子剤が必要なので、芳香族アミンそのものはよい求電子剤になりません。真の求電子種となる必要があるわけです。

芳香族アミンは、体内(肝臓)で代謝(酸化)酵素により、酸化されてヒドロキシルアミンになります。その後、アセチル基転写酵素によってO-アシル化(アセチル化)が進行して、そこから脱アシロキシ反応を経て、ナイトレニウムイオンが生成します。こいつが、真の求電子種なんですね。一般的にDNA中のグアニン塩基の8位炭素と化学反応して、DNAが修飾されます。

 

2016-01-23_04-08-29

DNAが変化してしまうわけですから、相当やばいんじゃないかと思うかもしれませんが、やばいですが、人間には自己修復能力があり、そのひとつが昨年ノーベル化学賞を受賞した「DNA修復」ですね。とはいっても、全部修復してくれず、エラーが起こればいわゆるがん化が始まります。上記に記した芳香族アミンは本当に体によくないので、心当たりが有る方気をつけてくださいね。

ところで、話はぜんぜん違うのですが、ニュースで報道される際に、試薬瓶写りますよね。試薬として販売されているものは多々あるので、化学者はそれを気をつけて使っているわけです。今回報道されたのはコレ。

2016-01-23_02-57-45

 

みたことある!と思った人は立派な合成化学者ですね。こういう時しか報道されない試薬会社の試薬ってなんとなく不名誉で可哀想な気がします(試薬会社は全く悪くありませんので悪しからず)。

追記 2016.12.22

本日、最終的に上述した工場(三星化学)で働き、膀胱がんを発症した男性7人について労災が認定されたそうです。オルト・トルイジンによる健康被害での労災認定は初めて。厚労省によると、これまでに国内でオルト・トルイジンの使用が確認された事業場は59カ所。今回労災認定された7人を含め10事業場で計24人が膀胱がんを発症しており、男性2人が労災申請しているとのこと。

 

関連書籍

[amazonjs asin=”4274208745″ locale=”JP” title=”よくわかる 製造業の化学物質管理—化学物質規制を製造業の強みに変える—”][amazonjs asin=”4774135178″ locale=”JP” title=”化学物質はなぜ嫌われるのか ‾「化学物質」のニュースを読み解く (知りたい!サイエンス 33)”]

 

Avatar photo

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. Bayer/Janssen Rivaroxaban 国内発売/F…
  2. 光触媒による水素生成効率が3%に
  3. シイタケ由来成分に抗アレルギー効果を確認
  4. 新型コロナウイルスをブロックする「N95マスクの95って一体何?…
  5. 住友化学の9月中間営業益は+20.5%、精密・医薬など好調で
  6. ファンケル、「ツイントース」がイソフラボンの生理活性を高める働き…
  7. 金よりも価値のある化学者の貢献
  8. 水の電気分解に適した高効率な貴金属フリーの電極が開発される:太陽…

注目情報

ピックアップ記事

  1. 可視光レドックス触媒と有機蓄光の融合 〜大気安定かつ高性能な有機蓄光の実現〜
  2. CRISPRの謎
  3. フェルキン・アーン モデル Felkin-Anh Model
  4. C-CN結合活性化を介したオレフィンへの触媒的不斉付加
  5. 「えれめんトランプ2.0」が発売された
  6. DNAが絡まないためのループ
  7. Al=Al二重結合化合物
  8. α,β-不飽和イミンのγ-炭素原子の不斉マイケル付加反応
  9. 二酸化炭素をほとんど排出せず、天然ガスから有用化学品を直接合成
  10. フェントン反応 Fenton Reaction

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年1月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

【太陽ホールディングス】新卒採用情報(2026卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

産総研の研究室見学に行ってきました!~採用情報や研究の現場について~

こんにちは,熊葛です.先日,産総研 生命工学領域の開催する研究室見学に行ってきました!本記事では,産…

第47回ケムステVシンポ「マイクロフローケミストリー」を開催します!

第47回ケムステVシンポジウムの開催告知をさせて頂きます!第47回ケムステVシンポジウムは、…

【味の素ファインテクノ】新卒採用情報(2026卒)

当社は入社時研修を経て、先輩指導のもと、実践(※)の場でご活躍いただきます。「いきなり実践で…

MI-6 / エスマット共催ウェビナー:デジタルで製造業の生産性を劇的改善する方法

開催日:2024年11月6日 申込みはこちら開催概要デジタル時代において、イノベーション…

窒素原子の導入がスイッチング分子の新たな機能を切り拓く!?

第630回のスポットライトリサーチは、大阪公立大学大学院工学研究科(小畠研究室)博士後期課程3年の …

エントロピーの悩みどころを整理してみる その1

Tshozoです。 エントロピーが煮詰まってきたので頭の中を吐き出し整理してみます。なんでこうも…

AJICAP-M: 位置選択的な抗体薬物複合体製造を可能にするトレースレス親和性ペプチド修飾技術

概要味の素株式会社の松田豊 (現 Exelixis 社)、藤井友博らは、親和性ペ…

材料開発におけるインフォマティクス 〜DBによる材料探索、スペクトル・画像活用〜

開催日:10/30 詳細はこちら開催概要研究開発領域におけるデジタル・トランスフォーメー…

ロベルト・カー Roberto Car

ロベルト・カー (Roberto Car 1947年1月3日 トリエステ生まれ) はイタリアの化学者…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP