[スポンサーリンク]

化学者のつぶやき

お望みの立体構造のジアミン、作ります。

[スポンサーリンク]

ヨウ素(I2)を触媒とする、アルケンの立体特異的ジアミノ化法が開発された。本手法は異なる立体化学のジアミンの簡便な作り分けを可能にした。

立体特異的な1,2-ジアミン合成

1,2-ジアミン構造は多くの医薬品や分子触媒の活性を担う骨格であるため、簡便かつ立体構造を制御したジアミン合成法の開発意義は大きい。最も直截的な1,2-ジアミン合成法としてアルケンのジアミノ化反応が知られるが、これまでの報告の多くは遷移金属[1]やアジド化剤[2]が必要もしくは立体の制御が困難であった[3]。遷移金属やアジド化剤を用いないアルケンに対する立体特異的なジアミノ化として、超原子価ヨウ素によるアンチジアミンの合成[5]やセレン触媒を用いるシンジアミンの合成[6]が報告されている(図 1A)。しかし、強力な酸化剤の使用や基質適用範囲が限られるなど、依然として改良の余地があった。
一方で、著者らは以前、銅やヨウ素分子を触媒としたクロラミン-Tを用いるアルケンのアジリジン化反応を報告している(図 1B)[6]。本論文ではクロラミン-Tをより電子不足なクロラミン-Nsにすることで、アジリジン化に続く開環反応を達成した。これはアルケンに対する立体特異的なジアミノ化反応である(図 1C)。また、同一分子内に2つの窒素原子をもつ分子を設計することで、同じ触媒系によるシン付加反応も報告している。これら同一触媒系の立体特異的な付加反応と適切な構造のアルケンを組み合わせることで、異なる立体構造の1,2-ジアミンの作り分けが可能となった。

図 1. (A) 立体特異的なジアミノ化反応、 (B) クロラミン類を用いたアジリジン化反応、(C) 今回の反応

 

“Diastereodivergent Intermolecular 1,2-Diamination of  Unactivated Alkenes Enabled by Iodine Catalysis”

Minakata, S.; Miwa, H.; Yamamoto, K.; Hirayama, A.; Okumura, S. J. Am. Chem. Soc. 2021, 143, 4112–4118.

DOI: 10.1021/jacs.1c00228

論文著者の紹介


研究者: 南方 聖司
研究者の経歴:
1988–1993 Ph.D., Osaka University, Japan
1993–1995 Research Fellow, DIC Corporation, Japan
1995–1997  Assistant Professor, Osaka University, Japan
1997–2000 Visiting Researcher, California Institute of Technology, USA (Prof. Erick M. Carreira)
2000–2002  Lecturer, Osaka University, Japan
2002–2010 Associate Professor, Osaka University, Japan
2010–present  Professor, Osaka University, Japan
研究内容:二酸化炭素を活用した合成化学、ヘテロ環合成法開発

論文の概要

ヨウ素と次亜塩素酸ナトリウム存在下、アルケン1にノシルアミドを加えると立体特異的にジアミノ化反応が進行し、アンチジアミン2を与える(図 2A)。アルケンには、ピロリドン1aやインデン1bが利用でき、アルコールをもつ基質1cであっても高収率で対応する2が得られる。また、ノシルアミドの代わりにクロラミン-BBSをアルケン3と反応させると立体特異的にジアミノ化が進行し、スルファミド4が得られる。シン付加反応は五員環3aや七員環3bといった単純な環状アルケンに加えて、インドールのような複素環式化合物3cにも適用できる。
本反応の立体特異性は図2Bの推定反応機構で説明される。アンチ付加反応において、次亜塩素酸ナトリウムとノシルアミドより生じたクロラミン-Ns(I-i)とヨウ素が反応し、ヨウ化物イオンと中間体II-iが生成する。生じたII-iがアルケンに付加し、環状ヨードニウム中間体およびアミドアニオン中間体III-iを与える。このIII-iがヨードニウム中間体にSN2型で求核攻撃し、IV-iが生成する。続けて、ヨウ化物イオンがIV-iの塩素を引き抜き、生じたアミドアニオンが、ヨウ素をもつ炭素に求核攻撃することでアジリジン骨格(V-i)が形成される。V-iはクロラミン-Nsによる求核攻撃で容易に開環し、アンチ1,2-ジアミンが生成する。シン付加反応の場合はIV-iiとヨウ化物イオンから生じたアミドアニオンが、ヨウ素をもつ炭素に求核攻撃することでシン1,2-ジアミン(V-ii)を得る。IVからVへの変換の際に生じる一塩化ヨウ素とヨウ化ナトリウムはヨウ素と塩化ナトリウムとなり、触媒サイクルが完結する。一連の反応(求核攻撃、脱離、環化)は立体保持で進行するため、立体特異的にジアミノ化が進行する。また、アンチ/シン付加反応で得られた1,2-ジアミンの窒素ユニットは容易にアミノ基(–NH2)に誘導できる。

図 2. (A) 最適反応条件および基質適用範囲、(B) 推定反応機構

以上、ヨウ素を触媒とする、アルケンの立体特異的ジアミノ化法が開発された。この立体特異的ジアミノ化反応に適切な構造のアルケンを用いることで、異なる立体構造の1,2-ジアミンを作り分けが可能となった。本反応は1,2-ジアミン構造をもつ医薬品、分子触媒などの合成に応用でき、様々な分野に貢献しうる可能性を秘めている。

参考文献

  1. Zhu, Y.; Cornwall, R. G.; Du, H.; Zhao, B.; Shi, Y. Catalytic Diamination of Olefins via N–N Bond Activation. Acc.  Chem. Res. 2014, 47, 3665. DOI: 10.1021/ar500344t
  2. Yuan, Y.-A.; Lu, D.-F.; Chen, Y.-R.; Xu, H. Iron-Catalyzed Direct Diazidation for a Broad Range of Olefins. Angew. Chem., Int. Ed. 2016, 55, 534. DOI: 10.1002/anie.201507550
  3. Cai, C.-Y.; Shu, X.-M.; Xu, H.-C. Practical and Stereoselective Electrocatalytic 1,2-Diamination of Alkenes.Nat. Commun. 2019, 10, 4953. DOI: 10.1038/s41467-019-13024-5
  4. Souto, J. A.; González, Y.; Iglesias, A.; Zian, D.; Lishchynskyi, A.; Muñiz, Iodine (III) Promoted Intermolecular Diamination of Alkenes. Chem. Asian. J.  2012, 7, 1103. DOI: 10.1002/anie.201103077
  5. Tao, Z.; Gilbert, B. B.; Denmark, S. E. Catalytic, Enantioselective syn-Diamination of Alkenes. J. Am. Chem. Soc. 2019, 141, 19161. DOI: 10.1021/jacs.9b11261
  6. Minakata, S. Utilization of N–X Bonds in the Synthesis of N-Heterocycles. Acc. Chem. Res. 2009, 42, 1172. DOI: 10.1021/ar900059r

他のジアミン合成法(ケムステ記事)

Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. なぜ傷ついたマジックマッシュルームは青くなるの?
  2. 実験と機械学習の融合!ホウ素触媒反応の新展開と新理解
  3. 有機合成化学協会誌2023年10月号:典型元素・テトラシアノシク…
  4. C(sp3)-Hアシル化を鍵とするザラゴジン酸Cの全合成
  5. 小説『ラブ・ケミストリー』聖地巡礼してきた
  6. 【速報】2017年ノーベル化学賞は「クライオ電子顕微鏡の開発」に…
  7. セルロース由来バイオ燃料にイオン液体が救世主!?
  8. 「化学と工業」読み放題になったの知ってますか?+特別キャンペーン…

注目情報

ピックアップ記事

  1. NBSでのブロモ化に、酢酸アンモニウムをひとつまみ
  2. 3つのラジカルを自由自在!アルケンのアリール–アルキル化反応
  3. 量子力学が予言した化学反応理論を実験で証明する
  4. インドの化学ってどうよ
  5. ケムステイブニングミキサー2024に参加しよう!
  6. 目からウロコの熱伝導性組成物 設計指南
  7. 前人未踏の超分子構造体を「数学のチカラ」で見つけ出す
  8. 本多 健一 Kenichi Honda
  9. 化学研究ライフハック:ソーシャルブックマークを活用しよう!
  10. 液クロ虎の巻シリーズ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年7月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

先端の質量分析:GC-MSおよびLC-MSデータ処理における機械学習の応用

キャラクタライゼーションの機械学習応用は、マテリアルズ・インフォマティクス(MI)およびラボオートメ…

原子半径・電気陰性度・中間体の安定性に起因する課題を打破〜担持Niナノ粒子触媒の協奏的触媒作用〜

第648回のスポットライトリサーチは、東京大学大学院工学系研究科(山口研究室)博士課程後期2年の松山…

リビングラジカル重合ガイドブック -材料設計のための反応制御-

概要高機能高分子材料の合成法として必須となったリビングラジカル重合を、ラジカル重合の基礎から、各…

高硬度なのに高速に生分解する超分子バイオプラスチックのはなし

Tshozoです。これまでプラスチックの選別の話やマイクロプラスチックの話、およびナノプラスチッ…

新発想の分子モーター ―分子機械の新たなパラダイム―

第646回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機反応論研究室 助教の …

大人気の超純水製造装置を組み立ててみた

化学・生物系の研究室に欠かせない超純水装置。その中でも最も知名度が高いのは、やはりメルクの Mill…

Carl Boschの人生 その11

Tshozoです。間が空きましたが前回の続きです。時系列が前後しますが窒素固定の開発を始めたころ、B…

PythonとChatGPTを活用するスペクトル解析実践ガイド

概要ケモメトリクスと機械学習によるスペクトル解析を、Pythonの使い方と数学の基礎から実践…

一塩基違いの DNA の迅速な単離: 対照実験がどのように Nature への出版につながったか

第645回のスポットライトリサーチは、東京大学大学院工学系研究科相田研究室の龚浩 (Gong Hao…

アキラル色素分子にキラル光学特性を付与するミセルを開発

第644回のスポットライトリサーチは、東京科学大学 総合研究院 応用化学系 化学生命科学研究所 吉沢…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP