[スポンサーリンク]

ケムステニュース

理研、放射性同位体アスタチンの大量製造法を開発

[スポンサーリンク]

理化学研究所 仁科加速器科学研究センター 核化学研究開発室、金属技研株式会社 技術開発本部 エンジニアリングセンターらの共同研究チームは、人工元素アスタチン(At)を大量に製造する技術の開発に成功しました。本研究成果は、Atが放出するα線を用いたがん治療薬の開発を加速すると期待されます。本研究成果は、第20回日本加速器学会年会において発表されました。(8月31日理化学研究所プレスリリース)

今回は、理化学研究所より発表された放射性同位体の製造に関するプレスリリースを取り上げます。

アスタチン(At)は85番元素であり、1940年に加速器を用いて人工的に合成され発見に至りました。アスタチン(astatine)という名前は、ギリシャ語で「不安定」を意味するastatosが語源であり、実際安定同位体は存在せず、最も長い半減期を持つ211Atでも8.1時間となっています。なぜこの不安定なアスタチンを製造することを目指しているかというと、アスタチンがα線を放出するためがん治療への応用が期待されているからです。例えば、甲状腺がんの治療では、放射性ヨウ素(131I)を用いたβ線治療が実施されています。しかし、繰り返しの治療を行っても十分な治療効果が得られない場合があり、またβ線による他者への被ばくを避ける設備と措置が必要です。そこで、よりエネルギーが高く透過性が低いα線を放出するアスタチンの化合物を用いた研究や治験が進められています。

アルファ線治療薬アスタチン(TAH-1005)を用いた治療のイメージ(出典:大阪大学プレスリリース)

上記の理由でアスタチンの需要が高まっていますが、半減期を考えると輸入することは到底不可能であり、国内での安定的な製造が求められています。そこで理研の研究チームは、2015年度より理研RIビームファクトリー(RIBF)AVFサイクロトロンを用いて、211Atの製造技術開発を行い、211Atの製造・供給を進めてきました。

従来は下の図のように、ビームの軸に対して15度傾けて設置された固体Biターゲットにサイクロトロンで加速したヘリウムイオンビームを一定時間照射し、その後、実験室で850度で加熱し、気体となった211Atを冷却・固化させ、BiとAtを分離していました。より多くの211Atを得るにはビーム強度を上げる必要がありますが、金属Biの融点が271.5℃と非常に低いため、ビーム強度を増大すると熱で融け落ちてしまい、211Atの生成量がビーム強度に比例して増大しないという問題がありました。

従来のアスタチン製造装置の概念図(出典:理研プレスリリース

そこで共同研究チームは、新しい211At製造装置の開発を行いました。具体的には、金属Bi標的を炭素製容器の内壁にリング状に張り付け、それを高速回転させ、Biが溶けてもビーム軸上に保持される機構にしました。また、高周波誘導コイルを用いて、その場で加熱し、標的を動かさずに加熱して211Atを回収できる機構も開発しました。従来装置と同じビーム出力40μAで試験運転を行った結果、同等の211Atの収率が得られ、従来装置の限界を超える50μAでは、一般的な研究に必要とされる約200 MBqの211Atの試験製造に成功しました。

本研究で開発したアスタチン製造装置の概念図(出典:理研プレスリリース

113番元素ニホニウム(Nh)の合成・発見に用いられた理研重イオン線形加速器(RILAC)は、3年間に及ぶ増強工事を経て、2020年より理研超伝導重イオン線形加速器(SRILAC)として生まれ変わりました。このSRILACは、200μA以上のHeイオンビームを発生できると期待されており、本研究で開発した装置をSRILACに組み合わせて211Atの製造効率を増大させ、医薬品の開発、実用化に貢献していくそうです。

研究内容は装置についての内容でしたが、化学的な特性から来る問題点を解決し、より効率的に211Atを回収できるように装置を組み立てたところは、興味深いと思いました。プレスリリースでは最終結果のみが紹介されていますが、公開されている特許の実験項からは、試行錯誤を垣間見ることができます。気になったのは大量のヘリウムガスを使っている点で、排気からもヘリウムを回収しているかもしれませんが、より少ない流量か他のガスで代替できないのか気になるところです。今後の医療技術発展のために211Atの製造が進むことを期待します。

関連書籍

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 【第一三共】抗血小板薬「プラスグレル」が初承認‐欧州で販売へ
  2. ノーベル化学賞田中さん 富山2大学の特任教授に
  3. 新たな要求に応えるために発展するフッ素樹脂の接着・接合技術
  4. アルツハイマー病・ワクチン開発相次ぐ、副作用回避へ知恵絞る
  5. IBM,high-k絶縁膜用ハフニウムの特性解析にスパコン「Bl…
  6. 武田薬品工業、米バイオベンチャー買収へ 280億円で
  7. よくわかる最新元素の基本と仕組み
  8. 令和3年度に登録された未来技術遺産が発表 ~フィッシャー・トロプ…

注目情報

ピックアップ記事

  1. 有機・高分子合成における脱”レアメタル”触媒の開発動向
  2. 中国へ行ってきました 西安・上海・北京編①
  3. 「日産化学」ってどんな会社?
  4. 化学探偵Mr.キュリー9
  5. レギッツジアゾ転移 Regitz Diazo Transfer
  6. カーボンナノベルト合成初成功の舞台裏 (3) 完結編
  7. 付設展示会へ行こう!ーWiley編
  8. CIPイノベーション共創プログラム「世界に躍進する創薬・バイオベンチャーの新たな戦略」
  9. オレフィンメタセシス Olefin Metathesis
  10. テトラキス[3,5-ビス(トリフルオロメチル)フェニル]ほう酸ナトリウム水和物 : Sodium Tetrakis[3,5-bis(trifluoromethyl)phenyl]borate Hydrate

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年9月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー