[スポンサーリンク]

ケムステニュース

理研、放射性同位体アスタチンの大量製造法を開発

[スポンサーリンク]

理化学研究所 仁科加速器科学研究センター 核化学研究開発室、金属技研株式会社 技術開発本部 エンジニアリングセンターらの共同研究チームは、人工元素アスタチン(At)を大量に製造する技術の開発に成功しました。本研究成果は、Atが放出するα線を用いたがん治療薬の開発を加速すると期待されます。本研究成果は、第20回日本加速器学会年会において発表されました。(8月31日理化学研究所プレスリリース)

今回は、理化学研究所より発表された放射性同位体の製造に関するプレスリリースを取り上げます。

アスタチン(At)は85番元素であり、1940年に加速器を用いて人工的に合成され発見に至りました。アスタチン(astatine)という名前は、ギリシャ語で「不安定」を意味するastatosが語源であり、実際安定同位体は存在せず、最も長い半減期を持つ211Atでも8.1時間となっています。なぜこの不安定なアスタチンを製造することを目指しているかというと、アスタチンがα線を放出するためがん治療への応用が期待されているからです。例えば、甲状腺がんの治療では、放射性ヨウ素(131I)を用いたβ線治療が実施されています。しかし、繰り返しの治療を行っても十分な治療効果が得られない場合があり、またβ線による他者への被ばくを避ける設備と措置が必要です。そこで、よりエネルギーが高く透過性が低いα線を放出するアスタチンの化合物を用いた研究や治験が進められています。

アルファ線治療薬アスタチン(TAH-1005)を用いた治療のイメージ(出典:大阪大学プレスリリース)

上記の理由でアスタチンの需要が高まっていますが、半減期を考えると輸入することは到底不可能であり、国内での安定的な製造が求められています。そこで理研の研究チームは、2015年度より理研RIビームファクトリー(RIBF)AVFサイクロトロンを用いて、211Atの製造技術開発を行い、211Atの製造・供給を進めてきました。

従来は下の図のように、ビームの軸に対して15度傾けて設置された固体Biターゲットにサイクロトロンで加速したヘリウムイオンビームを一定時間照射し、その後、実験室で850度で加熱し、気体となった211Atを冷却・固化させ、BiとAtを分離していました。より多くの211Atを得るにはビーム強度を上げる必要がありますが、金属Biの融点が271.5℃と非常に低いため、ビーム強度を増大すると熱で融け落ちてしまい、211Atの生成量がビーム強度に比例して増大しないという問題がありました。

従来のアスタチン製造装置の概念図(出典:理研プレスリリース

そこで共同研究チームは、新しい211At製造装置の開発を行いました。具体的には、金属Bi標的を炭素製容器の内壁にリング状に張り付け、それを高速回転させ、Biが溶けてもビーム軸上に保持される機構にしました。また、高周波誘導コイルを用いて、その場で加熱し、標的を動かさずに加熱して211Atを回収できる機構も開発しました。従来装置と同じビーム出力40μAで試験運転を行った結果、同等の211Atの収率が得られ、従来装置の限界を超える50μAでは、一般的な研究に必要とされる約200 MBqの211Atの試験製造に成功しました。

本研究で開発したアスタチン製造装置の概念図(出典:理研プレスリリース

113番元素ニホニウム(Nh)の合成・発見に用いられた理研重イオン線形加速器(RILAC)は、3年間に及ぶ増強工事を経て、2020年より理研超伝導重イオン線形加速器(SRILAC)として生まれ変わりました。このSRILACは、200μA以上のHeイオンビームを発生できると期待されており、本研究で開発した装置をSRILACに組み合わせて211Atの製造効率を増大させ、医薬品の開発、実用化に貢献していくそうです。

研究内容は装置についての内容でしたが、化学的な特性から来る問題点を解決し、より効率的に211Atを回収できるように装置を組み立てたところは、興味深いと思いました。プレスリリースでは最終結果のみが紹介されていますが、公開されている特許の実験項からは、試行錯誤を垣間見ることができます。気になったのは大量のヘリウムガスを使っている点で、排気からもヘリウムを回収しているかもしれませんが、より少ない流量か他のガスで代替できないのか気になるところです。今後の医療技術発展のために211Atの製造が進むことを期待します。

関連書籍

関連リンク

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 米のヒ素を除きつつ最大限に栄養を維持する炊き方が解明
  2. 招福豆ムクナの不思議(6)植物が身を護る化学物資
  3. 肩こりにはラベンダーを
  4. 伯東、高機能高分子材料「デンドリマー」、製造期間10分の1に
  5. 高脂血症治療薬の開発に着手 三和化学研究所
  6. 三菱化学が有機太陽電池事業に参入
  7. ミドリムシが燃料を作る!? 石油由来の軽油を100%代替可能な次…
  8. 子供と一緒にネットで化学実験を楽しもう!

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. アルケンとCOとジボロンからジボリルシクロプロパンを作る
  2. 光触媒が可能にする新規C-H/N-Hカップリング
  3. 立体特異的アジリジン化:人名反応エポキシ化の窒素バージョン
  4. 従来のペプチド合成法に替わるクリーンなペプチド合成法の確立を目指して―有機電解反応を利用したペプチド合成法の開発―
  5. 第3回「Matlantis User Conference」
  6. 第95回日本化学会付設展示会ケムステキャンペーン!Part I
  7. 水素化ジイソブチルアルミニウム Diisobutylaluminium hydride
  8. ラジカルを活用した新しいケージド化法: アセチルコリン濃度の時空間制御に成功!!
  9. カルボン酸をホウ素に変換する新手法
  10. 岩田忠久 Tadahisa Iwata

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年9月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

高分子材料におけるマテリアルズ・インフォマティクスの活用:高分子シミュレーションの応用

開催日:2024/07/17 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

そうだ、アルミニウムを丸裸にしてみようじゃないか

N-ヘテロ環ボリロキシ配位子を用いることで、アニオン性かつ非環式、さらには“裸“という極めて不安定な…

カルベンがアシストする芳香環の開環反応

カルベンがアシストする芳香環の開環反応が報告された。カルベンとアジドによる環形成でナイトレンインダゾ…

有機合成化学協会誌2024年7月号:イミン類縁体・縮環アズレン・C–O結合ホモリシス・ハロカルビン・触媒的バイオマス分解

有機合成化学協会が発行する有機合成化学協会誌、2024年7月号がオンライン公開されています。…

分子研「第139回分子科学フォーラム」に参加してみた

bergです。この度は2024年7月3日(水)にオンラインにて開催された、自然科学研究機構 分子科学…

光の色で反応性が変わる”波長選択的”な有機光触媒

照射する可視光の波長によって異なる反応性を示す、新規可視光レドックス触媒反応が開発された。赤色光照射…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP