[スポンサーリンク]

O

オレフィンメタセシス Olefin Metathesis

[スポンサーリンク]

概要

金属アルキリデン錯体触媒存在下、2種のオレフィンの結合の組み替えが起こり、新たなオレフィンが生成する反応。原則として平衡反応なので、生成系に進行させるためには工夫が必要となる(発生するエチレンガスを追い出すなど)。

歴史的経緯

1990年代に入りRobert H.Grubbsらが有効かつ実用性の高い触媒の開発に成功した。これによりオレフィンメタセシスは有機合成化学において頻繁に用いられる反応の一つとなった。
olefin_metathesis_3.gif

Classics in Total Synthesis II より抜粋)

その後さまざまなグループによって触媒の改良が施された。以下に示す触媒が汎用的なものとして知られている。
モリブデンを中心金属とする Schrock触媒は、活性が大変高い一方で、水、プロトン性化合物、空気に不安定であり取り扱いが難しい。
Ru-ベンジリデン型Grubbs第一世代/第二世代触媒は、オレフィン以外の化合物との反応性は低く、官能基受容性や取り扱いの容易さにおいてきわめて優れた性質を備える。ただしSchrock触媒よりも活性の面で劣り、四置換オレフィン合成などへの適用は難しい。
olefin_metathesis_4.gif
一人名反応ではあるものの、各方面へ与えたインパクトは測り知れないものがある。2005年ノーベル化学賞は本触媒系の開発に多大な貢献をしたY.ChauvinR.H.GrubbsおよびR.R.Schrockに与えられた。

 

基本文献

<Primitive Reference>

 

<Recent Reviews>

  • Tetrahedron Symposia: Tetrahedron 199955, 8141-8162. [link]
  • Furstner, A. Angew. Chem. Int. Ed. 200039, 3012. [Abstract]
  • Trnka, T. M.; Grubbs, R. H. Acc Chem. Res. 200134, 18. DOI: 10.1021/ar000114f
  • 片山博之, 小澤文幸, 有機合成化学協会誌 2001, 59,40.
  • Vernall, A. J.; Abell, A. D. Aldrichimica acta 200336, 93. [PDF]
  • Connon, S. J.; Blechert, S. Angew. Chem. Int. Ed. 200342, 1900. doi:10.1002/anie.200200556
  • Schrock, R. R.; Hoveyda, A. H. Angew. Chem. Int. Ed. 200342, 4592. doi:10.1002/anie.200300576
  • McReynolds, M. D.; Dougherty, J. M.; Hanson, P. R. Chem. Rev. 2004, 104, 2239. DOI: 10.1021/cr020109k
  • Grubbs, R. H. Tetrahedron 2004, 60, 7117. doi:10.1016/j.tet.2004.05.124
  • 森美和子, 有機合成化学協会誌 2005, 63, 423.
  • Nicolaou, K. C. et al. Angew. Chem. Int. Ed. 200544, 4490. DOI:10.1002/anie.200500369
  • Flynn, D. L.; Hanson, P. R. et al. Aldrichimica acta 200538, 3. [PDF]
  • Donohoe, T. J.; Orr, A. J.; Bingham, M. Angew. Chem. Int. Ed. 2006, 45, 2664. doi:10.1002/anie.200503512
  • Shrodi, Y.; Pederson, R. L. Aldrichimica acta 200740, 45.[PDF]
  • Hoveyda, A. H.; Zhugralin, A. R. Nature 2007450, 243. doi:10.1038/nature06351
  • NolanS. P.ClavierH. Chem. Soc. Rev.  2010,  39,  3305. DOI: 10.1039/B912410C
  • VougioukalakisG. C.GrubbsR. H. Chem. Rev.  2010,  110,  1746. DOI: 10.1021/cr9002424

<Nobel Lectures>

 

反応機構

いずれの触媒を用いても大まかには共通の機構で進行する(Chauvin Mechanism)。
olefin_metathesis_5.gif

 

反応例

  • 1990年代以降に開発された触媒でここまで広く用いられるものは他に類を見ない。あらゆる研究領域での応用例が膨大に知られている。詳しくは参考文献の成書を参照されたい。
  • 精密有機合成、特に大環状化合物合成においては、RCMはマクロラクトン化と同様、ほぼ定石扱いとなった。これにより、多くの逆合成解析は激変した。マクロラクトン化にない特徴として、タンデム反応により複数の環を一挙に構築できることも手法の強力さの一つである。

olefin_metathesis_6.gif

olefin_metathesis_7.gif
  • メタセシス触媒は精密有機合成のみならず、ポリマー合成にも大きなインパクトを与えた。官能基受容性が高いため、これまでは合成困難であった多官能基性ポリマーも合成できる。また、サイクリックポリマーという全く新しいポリマーの合成法も開拓されている。
    olefin_metathesis_8.gif
  • 構造チューニングを施した高活性Hoveyda-Grubbs型触媒は、通常Schrock型でしか為しえなかった四置換オレフィン合成にも用いることができる。[1] olefin_metathesis_9.gif

 

  • ROMとジビニルシクロブタン転位(変形Cope転位)を組み合わせた二環性骨格の効率的合成 olefin_metathesis_10.gif
  • Gambierolの全合成 olefin_metathesis_11.gif
  • 高活性な不斉RCM触媒[2] olefin_metathesis_12.gif

 

  • Z-選択的なオレフィンメタセシス反応[3]:金属下半分を完全にブロックしてしまえるような嵩高いBINOL誘導体を用いることがポイント。これにより通常は不利となる「オレフィンの置換基同士がcis位に位置する遷移状態」が有効になる。Z_methathesis_1.gif
  • ルテニウム触媒を用いたZ体選択的クロスメタセシス反応[4]:Rh-3b触媒を用いると、これまで適用が困難もしくは不可能であったアルコールやカルボン酸などを有する基質に対しても、高選択的にZ体のオレフィンを得ることができる。

fc73d1948c993f0e72455369b56b010d

実験手順

 

実験のコツ・テクニック

※ All Things Metathesisは、Grubbsが創立したメタセシス専門のベンチャー会社Materiaが運営するブログである。各触媒や反応条件ごとに特長・違いなどをまとめ、検討に役立つ多くの情報を提供してくれている。是非とも参考にしたい。
※ Grubbs触媒は、空気中で秤量できるが、溶媒の残存酸素には敏感に反応してしまう。脱気溶媒を用いると収率面でベター。

 

参考文献

  1. Stewart,I.; Ung, T.; Pletnev, A. A.; Berlin, J. A.; Grubbs, R. H.; Schrodi, Y. Org. Lett. 2007, 9, 1589. DOI:10.1021/ol0705144
  2.  Malcolmson, S. J.; Meek, S. J.; Sattely, E. S.; Schrock, R. R.; Hoveyda, A. H. Nature 2008, doi:10.1038/nature07594
  3. Meek, S. J.; O’Brien, R. V.; Llaveria, J.; Schrock, R. R.; Hoveyda, A. H. Nature 2011, 471, 461. doi:10.1038/nature09957
  4. Koh, M. J.; Khan, R. K. M.; Torker, S.; Yu, M.; Mikus, M. S.; Hoveyda, A. H. Nature 2015517, 181. DOI:10.1038/nature14061

 

関連反応

 

関連書籍

 

外部リンク

関連記事

  1. ディールス・アルダー反応 Diels-Alder Reactio…
  2. フリース転位 Fries Rearrangment
  3. 歪み促進型アジド-アルキン付加環化 SPAAC Reaction…
  4. アリルオキシカルボニル保護基 Alloc Protecting …
  5. ダニシェフスキー・北原ジエン Danishefsky-Kitah…
  6. クラプコ脱炭酸 Krapcho Decarboxylation
  7. ディークマン縮合 Dieckmann Condensation
  8. ビシュラー・ナピエラルスキー イソキノリン合成 Bischler…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 未解明のテルペン類の生合成経路を理論的に明らかに
  2. 「水素水」健康効果うたう表示は問題 国民生活センターが業者に改善求める
  3. 最新ペプチド合成技術とその創薬研究への応用
  4. 春田 正毅 Masatake Haruta
  5. ブドウ糖で聴くウォークマン? バイオ電池をソニーが開発
  6. 光で形を変える結晶
  7. 導電性ゲル Conducting Gels: 流れない流体に電気を流すお話
  8. 大日本製薬と住友製薬が来年10月合併・国内6位に
  9. ノーベル化学賞解説 on Twitter
  10. フラグメント創薬 Fragment-Based Drug Discovery/Design (FBDD)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

注目情報

最新記事

第59回「希土類科学の楽しさを広めたい」長谷川靖哉 教授

第59回目の研究者インタビューです! 今回は第36回ケムステVシンポ「光化学最前線2023」の講演者…

材料開発の未来とロードマップ -「人の付加価値を高めるインフォマティクスとロボティクス」-

 申込みはこちら■セミナー概要本動画は、20022年11月11日に開催された共催セミナーで弊…

第58回「新しい分子が世界を変える力を信じて」山田容子 教授

第58回目の研究者インタビューです! 今回は第36回ケムステVシンポ「光化学最前線2023」の講演者…

始めよう!3Dプリンターを使った実験器具DIY:準備・お手軽プリント編

オリジナルの実験器具を3Dプリンターで作る企画を始めました。第一弾として3Dプリンターの導入と試しに…

第16回日本化学連合シンポジウム「withコロナ時代における化学への期待」

およそ3年間に渡る新型コロナウイルス感染症の蔓延により、経済、文化、研究、社会活動のすべてが大きなダ…

アカデミアケミストがパパ育休を取得しました!

こんにちは、こんばんは、おはようございます、Macyこと九大院薬 助教の寄立麻琴です。タイトルに…

巧みに骨格構築!Daphgracilineの全合成

ユズリハアルカロイドであるdaphgracilineの全合成が初めて達成された。Type II 分子…

【四国化成ホールディングス】新卒採用情報(2024卒)

◆求める人財像:『使命感にあふれ、自ら考え挑戦する人財』私たちが社員に求めるのは、「独創力」…

部分酸化状態を有する純有機中性分子結晶の開発に初めて成功

第464回のスポットライトリサーチは、熊本大学 大学院自然科学教育部 理学専攻 化学コース 上田研究…

マテリアルズ・インフォマティクスにおける高次元ベイズ最適化の活用-パラメーター数が多い条件最適化テーマに対応したmiHub新機能もご紹介-

開催日:2023/2/1  申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影響を受…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP