[スポンサーリンク]

天然物

シラフィン silaffin

シラフィンは、ケイ藻から単離された、比較的に低分子のペプチドであり、ケイ酸の沈着を仲介する機能があります。シラフィンのペプチドは、高度に修飾されており、リジン残基がアルキル化されていたり、セリン残基がリン酸化されていたりして、分子として双性イオンの傾向が強い構造となっています。最低限ケイ酸の析出に必要なところはアミンが連なる部分であり、シラフィンのリン酸化は活性を高める役割があります。

 

はじめ、シラフィンはケイ藻の殻からフッ化水素で処理して単離され、試験管内でケイ酸の沈着を促進する作用が確認されました[1]。のちに、より穏和な条件でシラフィンがあらためて抽出され、本来はリン酸化を受けて活性が高められていることが判明しました[2]。ゲノムが解読[3]され、DNAマイクロアレイによって遺伝子発現のパターンが解析[4]され、モデルケイ藻としての地位を確立したThalassiosira pseudonana の研究によると、シラフィンのリン酸化は、細胞の小胞体に分布する、ケイ藻に特有なタイプのキナーゼによって、触媒[5]されます。

 

GREENm0022.PNG

論文[1]より転載

ケイ藻はケイ酸からなる殻を持った単細胞藻類です。ケイ酸の殻に見られる紋様は多様で、種ごとに特有のパターンを持っています。

進化の観点から見ると、ケイ藻がその身にまとう殻は風変わりなものです。ケイ藻は光合成をする独立栄養生物ですが、細胞壁などその他の教科書的な植物らしさを、他の藻類とあまり共有していません。通常の植物はシアノバクテリアのなかまを取り込んで進化したため葉緑体は二重膜ですが、ケイ藻はかつて単細胞紅藻のなかまを取り込んで進化したため葉緑体は四重膜です。進化の経緯を考えての通り、通常の植物の細胞壁がセルロースを主成分とするのに対し、ケイ藻の殻はその由来が異なります。ケイ酸から成る殻は、ケイ藻のなかまで固有に進化したものです。また、 イネなど他の植物でシラフィンは見られません。

ケイ藻の培養液に、二酸化ケイ素に加えて二酸化ゲルマニウムを混ぜると、増殖が抑制されます。他の藻類では影響が観察できないほど薄い二酸化ゲルマニウム水溶液でも、ケイ藻の増殖が抑制されます。シラフィンの仲介でケイ藻の殻にいったんゲルマニウムが誤って取り込まれるものの、殻が本来どおりの機械特性を持たないことが一因のようです。地球化学の観点から見ると、ゲルマニウムはケイ素と同じように環境中をめぐるとされます[6]。

ケイ素はガラスや半導体の材料として重要な元素です。改変シラフィンを大腸菌に発現[7]させたり、化学合成した類似物をイオン液体の中で使用[8]してみたりと、新たな原材料をもとめて、バイオシリカの研究が続けられています。

 


  • 参考文献
[1] シラフィンをフッ化水素処理後に単離

“Polycationic Peptides from Diatom Biosilica That Direct Silica Nanosphere Formation” Nils Kroger et al. Science 1999 DOI: 10.1126/science.286.5442.1129

[2] シラフィンは本来リン酸化されていた

“Self-Assembly of Highly Phosphorylated Silaf?ns and Their Function in Biosilica Morphogenesis” Nils Kroger et al. Science 2002 DOI: 10.1126/science.1076221

[3] ケイ藻Thalassiosira pseudonanaのゲノム解読

“The Genome of the Diatom Thalassiosira pseudonana: Ecology, Evolution, and Metabolism” E. Virginia Armbrust et al. Science 2004 DOI: 10.1126/science.1101156

[4] ケイ藻Thalassiosira pseudonanaの遺伝子発現プロファイル

“Whole-genome expression profiling of the marine diatom Thalassiosira pseudonana identifies genes involved in silicon bioprocesses” Thomas Mock et al. PNAS 2008 DOI: 10.1073/pnas.0707946105

[5] シラフィンをリン酸化するキナーゼの記載

“Characterization of an Endoplasmic Reticulum-associated Silaffin Kinase from the Diatom Thalassiosira pseudonana” Vonda Sheppard et al. JBC 2009 DOI: 10.1074/jbc.M109.039529

[6] 地球化学の観点から見るとゲルマニウムはケイ素と同じように環境中をめぐる

“The Marine Geochemistry of Germanium: Ekasilicon” Philip N. Froelich et al. Science 1981 DOI: 10.1126/science.213.4504.205

[7] 大腸菌を利用するシリカ微粒子の製造方法(特開2006-197825

[8] イオン液体の中で塩基性アミノ酸に富むペプチドによりケイ酸の生体模倣析出

“Cationic Amino Acids Specific Biomimetic Silicification in Ionic Liquid: A Quest to Understand the Formation of 3-D Structures in Diatoms” Rajesh Ramanathan et al. PLoS ONE 2011 DOI: 10.1371/journal.pone.0017707 

 


  • 関連書籍

 

The following two tabs change content below.
Green

Green

静岡で化学を教えています。よろしくお願いします。
Green

最新記事 by Green (全て見る)

関連記事

  1. クレアチン creatine 
  2. ノッド因子 (Nod factor)
  3. ヒストリオニコトキシン histrionicotoxin
  4. ノルゾアンタミン /Norzoanthamine
  5. グルタミン酸 / Glutamic Acid
  6. プラテンシマイシン /platensimycin
  7. バイアグラ /viagra
  8. ペルフルオロデカリン (perfluorodecalin)

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 創造化学研究所、環境負荷の少ない実証ベンチプラント稼動へ
  2. アルミニウム Aluminium 最も多い金属元素であり、一円玉やアルミホイルの原料
  3. 演習で学ぶ有機反応機構―大学院入試から最先端まで
  4. スイスの博士課程ってどうなの?1〜ヨーロッパの博士課程を知る〜
  5. 創薬開発で使用される偏った有機反応
  6. ギ酸 (formic acid)
  7. 複雑化合物合成にも適用可能なC-H酸化反応
  8. ゲオスミン(geosmin)
  9. まっすぐなペプチドがつまらないなら「さあ輪になって踊ろ!」
  10. 来年は世界化学年:2011年は”化学の年”!

関連商品

注目情報

注目情報

最新記事

有機ホウ素化合物を用いたSNi型立体特異的β-ラムノシル化反応の開発

第166回目のスポットライトリサーチは、慶應義塾大学理工学部博士課程・西 信哉(にし のぶや)さんに…

アルキルアミンをボロン酸エステルに変換する

不活性C(sp3)–N結合をボリル化する初めての反応が開発された。入手容易なアルキルアミンから様々な…

生物の仕組みに倣う:背景と光に応じて色が変わる顔料の開発

第165回目のスポットライトリサーチは、名古屋大学大学院工学研究科 ・坂井美紀(さかい みき)さんに…

イミデートラジカルを用いた多置換アミノアルコール合成

イミデートラジカルを用い、一挙に多置換アミノアルコールを合成する方法が開発された。穏和な条件かつ位置…

ジェフリー·ロング Jeffrey R. Long

ジェフリー·ロング(Jeffrey R. Long, 1969年xx月xx日-)は、アメリカの無機材…

【なんと簡単な!】 カーボンナノリングを用いた多孔性ナノシートのボトムアップ合成

第 164 回目のスポットライトリサーチは東京大学大学院新領域創成科学研究科 物質系専攻の森泰造 (…

PAGE TOP