[スポンサーリンク]

医薬品

アセトアミノフェン Acetaminophen

[スポンサーリンク]

 

アセトアミノフェン (acetaminophen) は、有機化合物の一つ。海外ではパラセタモール (paracetamol) とも呼ばれる。解熱鎮痛剤として古くから使用されている医薬品である。本品単剤を有効成分として含む製品にはカロナール®、タイレノール®、ラックル®速溶錠などがある。その他、数多くの風邪薬や鎮痛用の合剤に含まれている。

構造と化学的性質

4-アミノフェノールのアミノ基をアセチル化したのみの単純な化合物。分子量は 151.165 で、既承認薬の中では小さい方である。

白色の結晶又は結晶性の粉末である。メタノール又はエタノール (95 )に溶けやすく、水にやや溶けにくく、ジエチルエーテルに極めて溶けにくい。水酸化ナトリウム試液に溶ける (カロナール®錠インタビューフォームより)。

合成

古典的には、フェノールのニトロ化と続く接触還元により 4-アミノフェノールを合成し、無水酢酸で N-アセチル化することでアセトアミノフェンが得られる。また、ニトロベンゼンの電解還元により 4-アミノフェノールを得る方法もある。

Scheme 1 古典的なアセトアミノフェンの合成経路

その他に、フェノールの直接的 p-アセチル化とベックマン転位を用いた Celanese 社の経路もある。

Scheme 2 Celanese 社によるアセトアミノフェンの合成経路

効能又は効果

○ 下記の疾患並びに症状の鎮痛
頭痛、耳痛、症候性神経痛、腰痛症、筋肉痛、打撲痛、捻挫痛、月経痛、分娩後痛、がん による疼痛、歯痛、歯科治療後の疼痛、変形性関節症
○ 下記疾患の解熱・鎮痛
急性上気道炎(急性気管支炎を伴う急性上気道炎を含む)
○ 小児科領域における解熱・鎮痛
カロナール®錠インタビューフォームより

歴史

1873 年にドイツの化学者によって初めて合成されたとされる [1]が、英語版ウィキペディアなどによると 1852 年にフランスの化学者によって合成されたとする説もあるようだ。一般用医薬品タイレノールの HP では 1873 年説を採用している。1877 年に解熱鎮痛効果が Joseph von Mering による臨床試験によって見出され、1893年に医薬品としての応用が始まった。しかしその後なかなか普及せず、1948 年に、既に解熱鎮痛薬として知られていたアセトアニリドとフェナセチン (下図) の両者の主要な活性代謝物として認められて以来、解熱鎮痛薬として広く使用されるようになった。

解熱鎮痛薬としての位置付け

19世紀から20世紀中頃まで汎用されていたアミノピリン・アンチピリンなどのピリン系解熱鎮痛薬は、重篤な発疹や血液障害、発がん性などの疑いから1970年代以降徐々に使用されなくなり、代替薬としてアセトアミノフェンの使用が増加した。またアセトアミノフェンと同系統のベンズアニリド構造を有するフェナセチンも腎障害などの副作用のため2000年代からは使用されなくなっている。アスピリンやイブプロフェンといった非ステロイド性抗炎症薬 (NSAIDs) と異なり、重篤な副作用であるライ症候群を起こさない。このため、小児のインフルエンザや水痘の解熱など、NSAIDs の使用できない症例の解熱においては第一選択となる。また一般的に NSAIDs の使用が禁忌な15歳未満の小児や妊婦・授乳婦にも使用可能である。子ども用の風邪薬に含まれている解熱成分は主にアセトアミノフェンである。

なお誤解されることが多いが、アセトアミノフェンは NSAIDs には分類されない。NSAIDs の主要な作用機序はシクロオキシゲナーゼ-2 (COX-2) の阻害であるが、アセトアミノフェンは COX-2 をほとんど阻害しない。アセトアミノフェンの解熱鎮痛における作用機序は明確にはわかっていないが、中枢系に作用することが示唆されている。またアセトアミノフェンは COX-2 の阻害が弱いため抗炎症効果はほとんど示さない。NSAIDsは COX のアイソザイムである COX-1 の阻害により消化管粘膜障害作用を示すが、アセトアミノフェンにはそのような効果がなく、比較的消化管にも優しい薬である (ただし、添付文書には「空腹時の服用は避けることが望ましい」とは記載されている)。

代謝と毒性

NSAIDs とは異なる機序でアセトアミノフェンは重篤な毒性を示すことがあるので、過量投与には注意が必要である。アセトアミノフェンは、常用量では大半がグルクロン酸抱合や硫酸抱合によって代謝され排泄される。一部はシトクロムP450 (CYP2E1) で水酸化され、活性代謝物 N-acetyl-p-benzoquinoneimine (NAPQI) を生成する。NAPQI は肝細胞内でグルタチオン(GSH) 抱合を 受けた後、メルカプツール酸誘導体として尿中に排泄される (カロナール®錠インタビューフォームより)。
アセトアミノフェンの大量接種により肝臓での抱合能が飽和・低下すると、CYP2E1 による NAPQI の生成が増加する。いわゆる反応性代謝物である NAPQI は求電子性物質グルタチオンによって解毒されるが、そのグルタチオンも枯渇した場合、蓄積した NAPQI の親電子物質としての毒性 (タンパク質などの生体分子と共有結合する) により重篤な肝障害を発症するおそれがある。また CYP2E1 の誘導剤であるエタノールを多量に摂取すると、グルクロン酸抱合よりも CYP2E1 による代謝が優先し、この場合も NAPQI の生成割合が増加することから、エタノール (酒) とアセトアミノフェンの併用は非常に危険である

アセトアミノフェンの代謝機構 (こちらの記事より引用)

参考文献

[1] 郡司敦子、郡司明彦、田村幸彦、平尾功治、町田光、秋田季子、小林奈緒美、藤井彰、「古くて新しい鎮痛薬アセトアミノフェン」、歯科薬物療法、2009、28(3)、109-116、DOI: 10.11263/jsotp.28.109.

関連書籍

痛みの構造で考える鎮痛薬の選択

痛みの構造で考える鎮痛薬の選択

金井昭文
¥4,950(as of 12/15 15:01)
Amazon product information
Avatar photo

DAICHAN

投稿者の記事一覧

創薬化学者と薬局薬剤師の二足の草鞋を履きこなす、四年制薬学科の生き残り。
薬を「創る」と「使う」の双方からサイエンスに向き合っています。
しかし趣味は魏志倭人伝の解釈と北方民族の古代史という、あからさまな文系人間。
どこへ向かうかはfurther research is needed.

関連記事

  1. シアノスター Cyanostar
  2. ロピニロールのメディシナルケミストリー -iPS創薬でALS治療…
  3. シスプラチン しすぷらちん cisplatin
  4. カリオフィレン /caryophyllene
  5. トラネキサム酸 / tranexamic acid
  6. カルボラン carborane
  7. ヨードホルム (iodoform)
  8. ペンタシクロアナモキシ酸 pentacycloanamoxic…

注目情報

ピックアップ記事

  1. ERATO 野崎 樹脂分解触媒:特任研究員募集のお知らせ
  2. 化学者の卵、就職活動に乗りだす
  3. 血液検査による新しいがん診断方法の開発!
  4. 有機合成のための触媒反応103
  5. Google Scholarにプロフィールを登録しよう!
  6. 有機合成化学協会誌2022年11月号:英文特別号
  7. 第八回 ユニークな触媒で鏡像体をつくり分けるー林民生教授
  8. ポンコツ博士の海外奮闘録XVIII ~博士,WBCを観る~
  9. とある化学者の海外研究生活:スイス留学編
  10. トコジラミの話 最新の状況まとめ(2023年版)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年10月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP