[スポンサーリンク]

医薬品

アセトアミノフェン Acetaminophen

[スポンサーリンク]

 

アセトアミノフェン (acetaminophen) は、有機化合物の一つ。海外ではパラセタモール (paracetamol) とも呼ばれる。解熱鎮痛剤として古くから使用されている医薬品である。本品単剤を有効成分として含む製品にはカロナール®、タイレノール®、ラックル®速溶錠などがある。その他、数多くの風邪薬や鎮痛用の合剤に含まれている。

構造と化学的性質

4-アミノフェノールのアミノ基をアセチル化したのみの単純な化合物。分子量は 151.165 で、既承認薬の中では小さい方である。

白色の結晶又は結晶性の粉末である。メタノール又はエタノール (95 )に溶けやすく、水にやや溶けにくく、ジエチルエーテルに極めて溶けにくい。水酸化ナトリウム試液に溶ける (カロナール®錠インタビューフォームより)。

合成

古典的には、フェノールのニトロ化と続く接触還元により 4-アミノフェノールを合成し、無水酢酸で N-アセチル化することでアセトアミノフェンが得られる。また、ニトロベンゼンの電解還元により 4-アミノフェノールを得る方法もある。

Scheme 1 古典的なアセトアミノフェンの合成経路

その他に、フェノールの直接的 p-アセチル化とベックマン転位を用いた Celanese 社の経路もある。

Scheme 2 Celanese 社によるアセトアミノフェンの合成経路

効能又は効果

○ 下記の疾患並びに症状の鎮痛
頭痛、耳痛、症候性神経痛、腰痛症、筋肉痛、打撲痛、捻挫痛、月経痛、分娩後痛、がん による疼痛、歯痛、歯科治療後の疼痛、変形性関節症
○ 下記疾患の解熱・鎮痛
急性上気道炎(急性気管支炎を伴う急性上気道炎を含む)
○ 小児科領域における解熱・鎮痛
カロナール®錠インタビューフォームより

歴史

1873 年にドイツの化学者によって初めて合成されたとされる [1]が、英語版ウィキペディアなどによると 1852 年にフランスの化学者によって合成されたとする説もあるようだ。一般用医薬品タイレノールの HP では 1873 年説を採用している。1877 年に解熱鎮痛効果が Joseph von Mering による臨床試験によって見出され、1893年に医薬品としての応用が始まった。しかしその後なかなか普及せず、1948 年に、既に解熱鎮痛薬として知られていたアセトアニリドとフェナセチン (下図) の両者の主要な活性代謝物として認められて以来、解熱鎮痛薬として広く使用されるようになった。

解熱鎮痛薬としての位置付け

19世紀から20世紀中頃まで汎用されていたアミノピリン・アンチピリンなどのピリン系解熱鎮痛薬は、重篤な発疹や血液障害、発がん性などの疑いから1970年代以降徐々に使用されなくなり、代替薬としてアセトアミノフェンの使用が増加した。またアセトアミノフェンと同系統のベンズアニリド構造を有するフェナセチンも腎障害などの副作用のため2000年代からは使用されなくなっている。アスピリンやイブプロフェンといった非ステロイド性抗炎症薬 (NSAIDs) と異なり、重篤な副作用であるライ症候群を起こさない。このため、小児のインフルエンザや水痘の解熱など、NSAIDs の使用できない症例の解熱においては第一選択となる。また一般的に NSAIDs の使用が禁忌な15歳未満の小児や妊婦・授乳婦にも使用可能である。子ども用の風邪薬に含まれている解熱成分は主にアセトアミノフェンである。

なお誤解されることが多いが、アセトアミノフェンは NSAIDs には分類されない。NSAIDs の主要な作用機序はシクロオキシゲナーゼ-2 (COX-2) の阻害であるが、アセトアミノフェンは COX-2 をほとんど阻害しない。アセトアミノフェンの解熱鎮痛における作用機序は明確にはわかっていないが、中枢系に作用することが示唆されている。またアセトアミノフェンは COX-2 の阻害が弱いため抗炎症効果はほとんど示さない。NSAIDsは COX のアイソザイムである COX-1 の阻害により消化管粘膜障害作用を示すが、アセトアミノフェンにはそのような効果がなく、比較的消化管にも優しい薬である (ただし、添付文書には「空腹時の服用は避けることが望ましい」とは記載されている)。

代謝と毒性

NSAIDs とは異なる機序でアセトアミノフェンは重篤な毒性を示すことがあるので、過量投与には注意が必要である。アセトアミノフェンは、常用量では大半がグルクロン酸抱合や硫酸抱合によって代謝され排泄される。一部はシトクロムP450 (CYP2E1) で水酸化され、活性代謝物 N-acetyl-p-benzoquinoneimine (NAPQI) を生成する。NAPQI は肝細胞内でグルタチオン(GSH) 抱合を 受けた後、メルカプツール酸誘導体として尿中に排泄される (カロナール®錠インタビューフォームより)。
アセトアミノフェンの大量接種により肝臓での抱合能が飽和・低下すると、CYP2E1 による NAPQI の生成が増加する。いわゆる反応性代謝物である NAPQI は求電子性物質グルタチオンによって解毒されるが、そのグルタチオンも枯渇した場合、蓄積した NAPQI の親電子物質としての毒性 (タンパク質などの生体分子と共有結合する) により重篤な肝障害を発症するおそれがある。また CYP2E1 の誘導剤であるエタノールを多量に摂取すると、グルクロン酸抱合よりも CYP2E1 による代謝が優先し、この場合も NAPQI の生成割合が増加することから、エタノール (酒) とアセトアミノフェンの併用は非常に危険である

アセトアミノフェンの代謝機構 (こちらの記事より引用)

参考文献

[1] 郡司敦子、郡司明彦、田村幸彦、平尾功治、町田光、秋田季子、小林奈緒美、藤井彰、「古くて新しい鎮痛薬アセトアミノフェン」、歯科薬物療法、2009、28(3)、109-116、DOI: 10.11263/jsotp.28.109.

関連書籍

痛みの構造で考える鎮痛薬の選択

痛みの構造で考える鎮痛薬の選択

金井昭文
¥4,600(as of 05/13 02:35)
Amazon product information
Avatar photo

DAICHAN

投稿者の記事一覧

創薬化学者と薬局薬剤師の二足の草鞋を履きこなす、四年制薬学科の生き残り。
薬を「創る」と「使う」の双方からサイエンスに向き合っています。
しかし趣味は魏志倭人伝の解釈と北方民族の古代史という、あからさまな文系人間。
どこへ向かうかはfurther research is needed.

関連記事

  1. 化学者のためのエレクトロニクス講座~無電解卑金属めっきの各論編~…
  2. フラーレン /Fullerene
  3. スピノシン Spinosyn
  4. A-ファクター A-factor
  5. エチルマレイミド (N-ethylmaleimide)
  6. 化学者のためのエレクトロニクス講座~次世代の通信技術編~
  7. みんなおなじみ DMSO が医薬品として承認!
  8. ペルフルオロデカリン (perfluorodecalin)

注目情報

ピックアップ記事

  1. 世界の技術進歩を支える四国化成の「独創力」
  2. 逆生合成理論解析という手法を開発し、テルペン系類縁天然物 peniroquesine の難解な生合成機構の解明に成功
  3. 第63回野依フォーラム例会「データ駆動型化学が拓く新たな世界」特別配信
  4. リビングラジカル重合による高分子材料合成技術【終了】
  5. ストーク エナミン Stork Enamine
  6. 安藤弘宗 Hiromune Ando
  7. 実験手袋をいろいろ試してみたーつかいすてから高級手袋までー
  8. IGZO
  9. ハロゲン移動させーテル!N-ヘテロアレーンのC–Hエーテル化
  10. Excelでできる材料開発のためのデータ解析[超入門]-統計の基礎と実験データの把握-

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年10月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

有機合成化学協会誌2025年5月号:特集号 有機合成化学の力量を活かした構造有機化学のフロンティア

有機合成化学協会が発行する有機合成化学協会誌、2025年5月号がオンラインで公開されています!…

ジョセップ・コルネラ Josep Cornella

ジョセップ・コルネラ(Josep Cornella、1985年2月2日–)はスペイン出身の有機・無機…

電気化学と数理モデルを活用して、複雑な酵素反応の解析に成功

第658回のスポットライトリサーチは、京都大学大学院 農学研究科(生体機能化学研究室)修士2年の市川…

ティム ニューハウス Timothy R. Newhouse

ティモシー・ニューハウス(Timothy R. Newhouse、19xx年xx月x日–)はアメリカ…

熊谷 直哉 Naoya Kumagai

熊谷 直哉 (くまがいなおや、1978年1月11日–)は日本の有機化学者である。慶應義塾大学教授…

マシンラーニングを用いて光スイッチング分子をデザイン!

第657 回のスポットライトリサーチは、北海道大学 化学反応創成研究拠点 (IC…

分子分光学の基礎

こんにちは、Spectol21です!分子分光学研究室出身の筆者としては今回の本を見逃…

ファンデルワールス力で分子を接着して三次元の構造体を組み上げる

第 656 回のスポットライトリサーチは、京都大学 物質-細胞統合システム拠点 (iCeMS) 古川…

第54回複素環化学討論会 @ 東京大学

開催概要第54回複素環化学討論会日時:2025年10月9日(木)~10月11日(土)会場…

クソニンジンのはなし ~草餅の邪魔者~

Tshozoです。昔住んでいた社宅近くの空き地の斜面に結構な数の野草があって、中でもヨモギは春に…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP