[スポンサーリンク]

医薬品

アセトアミノフェン Acetaminophen

[スポンサーリンク]

 

アセトアミノフェン (acetaminophen) は、有機化合物の一つ。海外ではパラセタモール (paracetamol) とも呼ばれる。解熱鎮痛剤として古くから使用されている医薬品である。本品単剤を有効成分として含む製品にはカロナール®、タイレノール®、ラックル®速溶錠などがある。その他、数多くの風邪薬や鎮痛用の合剤に含まれている。

構造と化学的性質

4-アミノフェノールのアミノ基をアセチル化したのみの単純な化合物。分子量は 151.165 で、既承認薬の中では小さい方である。

白色の結晶又は結晶性の粉末である。メタノール又はエタノール (95 )に溶けやすく、水にやや溶けにくく、ジエチルエーテルに極めて溶けにくい。水酸化ナトリウム試液に溶ける (カロナール®錠インタビューフォームより)。

合成

古典的には、フェノールのニトロ化と続く接触還元により 4-アミノフェノールを合成し、無水酢酸で N-アセチル化することでアセトアミノフェンが得られる。また、ニトロベンゼンの電解還元により 4-アミノフェノールを得る方法もある。

Scheme 1 古典的なアセトアミノフェンの合成経路

その他に、フェノールの直接的 p-アセチル化とベックマン転位を用いた Celanese 社の経路もある。

Scheme 2 Celanese 社によるアセトアミノフェンの合成経路

効能又は効果

○ 下記の疾患並びに症状の鎮痛
頭痛、耳痛、症候性神経痛、腰痛症、筋肉痛、打撲痛、捻挫痛、月経痛、分娩後痛、がん による疼痛、歯痛、歯科治療後の疼痛、変形性関節症
○ 下記疾患の解熱・鎮痛
急性上気道炎(急性気管支炎を伴う急性上気道炎を含む)
○ 小児科領域における解熱・鎮痛
カロナール®錠インタビューフォームより

歴史

1873 年にドイツの化学者によって初めて合成されたとされる [1]が、英語版ウィキペディアなどによると 1852 年にフランスの化学者によって合成されたとする説もあるようだ。一般用医薬品タイレノールの HP では 1873 年説を採用している。1877 年に解熱鎮痛効果が Joseph von Mering による臨床試験によって見出され、1893年に医薬品としての応用が始まった。しかしその後なかなか普及せず、1948 年に、既に解熱鎮痛薬として知られていたアセトアニリドとフェナセチン (下図) の両者の主要な活性代謝物として認められて以来、解熱鎮痛薬として広く使用されるようになった。

解熱鎮痛薬としての位置付け

19世紀から20世紀中頃まで汎用されていたアミノピリン・アンチピリンなどのピリン系解熱鎮痛薬は、重篤な発疹や血液障害、発がん性などの疑いから1970年代以降徐々に使用されなくなり、代替薬としてアセトアミノフェンの使用が増加した。またアセトアミノフェンと同系統のベンズアニリド構造を有するフェナセチンも腎障害などの副作用のため2000年代からは使用されなくなっている。アスピリンやイブプロフェンといった非ステロイド性抗炎症薬 (NSAIDs) と異なり、重篤な副作用であるライ症候群を起こさない。このため、小児のインフルエンザや水痘の解熱など、NSAIDs の使用できない症例の解熱においては第一選択となる。また一般的に NSAIDs の使用が禁忌な15歳未満の小児や妊婦・授乳婦にも使用可能である。子ども用の風邪薬に含まれている解熱成分は主にアセトアミノフェンである。

なお誤解されることが多いが、アセトアミノフェンは NSAIDs には分類されない。NSAIDs の主要な作用機序はシクロオキシゲナーゼ-2 (COX-2) の阻害であるが、アセトアミノフェンは COX-2 をほとんど阻害しない。アセトアミノフェンの解熱鎮痛における作用機序は明確にはわかっていないが、中枢系に作用することが示唆されている。またアセトアミノフェンは COX-2 の阻害が弱いため抗炎症効果はほとんど示さない。NSAIDsは COX のアイソザイムである COX-1 の阻害により消化管粘膜障害作用を示すが、アセトアミノフェンにはそのような効果がなく、比較的消化管にも優しい薬である (ただし、添付文書には「空腹時の服用は避けることが望ましい」とは記載されている)。

代謝と毒性

NSAIDs とは異なる機序でアセトアミノフェンは重篤な毒性を示すことがあるので、過量投与には注意が必要である。アセトアミノフェンは、常用量では大半がグルクロン酸抱合や硫酸抱合によって代謝され排泄される。一部はシトクロムP450 (CYP2E1) で水酸化され、活性代謝物 N-acetyl-p-benzoquinoneimine (NAPQI) を生成する。NAPQI は肝細胞内でグルタチオン(GSH) 抱合を 受けた後、メルカプツール酸誘導体として尿中に排泄される (カロナール®錠インタビューフォームより)。
アセトアミノフェンの大量接種により肝臓での抱合能が飽和・低下すると、CYP2E1 による NAPQI の生成が増加する。いわゆる反応性代謝物である NAPQI は求電子性物質グルタチオンによって解毒されるが、そのグルタチオンも枯渇した場合、蓄積した NAPQI の親電子物質としての毒性 (タンパク質などの生体分子と共有結合する) により重篤な肝障害を発症するおそれがある。また CYP2E1 の誘導剤であるエタノールを多量に摂取すると、グルクロン酸抱合よりも CYP2E1 による代謝が優先し、この場合も NAPQI の生成割合が増加することから、エタノール (酒) とアセトアミノフェンの併用は非常に危険である

アセトアミノフェンの代謝機構 (こちらの記事より引用)

参考文献

[1] 郡司敦子、郡司明彦、田村幸彦、平尾功治、町田光、秋田季子、小林奈緒美、藤井彰、「古くて新しい鎮痛薬アセトアミノフェン」、歯科薬物療法、2009、28(3)、109-116、DOI: 10.11263/jsotp.28.109.

関連書籍

痛みの構造で考える鎮痛薬の選択

痛みの構造で考える鎮痛薬の選択

金井昭文
¥4,600(as of 02/07 15:48)
Amazon product information
Avatar photo

DAICHAN

投稿者の記事一覧

創薬化学者と薬局薬剤師の二足の草鞋を履きこなす、四年制薬学科の生き残り。
薬を「創る」と「使う」の双方からサイエンスに向き合っています。
しかし趣味は魏志倭人伝の解釈と北方民族の古代史という、あからさまな文系人間。
どこへ向かうかはfurther research is needed.

関連記事

  1. シラン Silane
  2. パクリタキセル(タキソール) paclitaxel(TAXOL)…
  3. ボツリヌストキシン (botulinum toxin)
  4. 過塩素酸カリウム (potassium perchlorate)…
  5. アントシアニン / anthocyanin
  6. アルファリポ酸 /α-lipoic acid
  7. ビタミンB12 /vitamin B12
  8. 塩化ラジウム223

注目情報

ピックアップ記事

  1. ブレデレック ピリミジン合成 Bredereck Pyrimidine Synthesis
  2. 最長のヘリセンをつくった
  3. 鈴木 章 Akira Suzuki
  4. クラウド版オフィススイートを使ってみよう
  5. 非天然アミノ酸合成に有用な不斉ロジウム触媒の反応機構解明
  6. ブドウ糖で聴くウォークマン? バイオ電池をソニーが開発
  7. ニコラス反応 Nicholas Reaction
  8. アジドインドリンを利用した深海細菌産生インドールアルカロイド骨格のワンポット構築
  9. 導電性高分子の基礎、技術開発とエネルギーデバイスへの応用【終了】
  10. デ-マヨ反応 de Mayo Reaction

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年10月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

マーフィー試薬 Marfey reagent

概要Marfey試薬(1-フルオロ-2,4-ジニトロフェニル-5-L-アラニンアミド、略称:FD…

UC Berkeley と Baker Hughes が提携して脱炭素材料研究所を設立

ポイント 今回新たに設立される研究所 Baker Hughes Institute for…

メトキシ基で転位をコントロール!Niduterpenoid Bの全合成

ナザロフ環化に続く二度の環拡大というカスケード反応により、多環式複雑天然物niduterpenoid…

金属酸化物ナノ粒子触媒の「水の酸化反応に対する駆動力」の実験的観測

第639回のスポットライトリサーチは、東京科学大学理学院化学系(前田研究室)の岡崎 めぐみ 助教にお…

【無料ウェビナー】粒子分散の最前線~評価法から処理技術まで徹底解説~(三洋貿易株式会社)

1.ウェビナー概要2025年2月26日から28日までの3日間にわたり開催される三…

第18回日本化学連合シンポジウム「社会実装を実現する化学人材創出における新たな視点」

日本化学連合ではシンポジウムを毎年2回開催しています。そのうち2025年3月4日開催のシンポジウムで…

理研の一般公開に参加してみた

bergです。去る2024年11月16日(土)、横浜市鶴見区にある、理化学研究所横浜キャンパスの一般…

ツルツルアミノ酸にオレフィンを!脂肪族アミノ酸の脱水素化反応

脂肪族アミノ酸側鎖の脱水素化反応が報告された。本反応で得られるデヒドロアミノ酸は多様な非標準アミノ酸…

野々山 貴行 Takayuki NONOYAMA

野々山 貴行 (NONOYAMA Takayuki)は、高分子材料科学、ゲル、ソフトマテリアル、ソフ…

城﨑 由紀 Yuki SHIROSAKI

城﨑 由紀(Yuki SHIROSAKI)は、生体無機材料を専門とする日本の化学者である。2025年…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP