[スポンサーリンク]

B

ホウ素アート錯体の1,2-メタレート転位 1,2-Metallate Rearrangement

[スポンサーリンク]

ホウ素原子は空のp軌道を有することから、3配位と4配位両方の構造を安定的にとることができます。3配位のボランは求電子的に振る舞う一方、4配位のホウ素アート錯体(ボレート)は求核種としてはたらきます。これらのボレート上のアルキル基やヒドリドは、脱離しうる置換基がある場合、容易に1,2-メタレート転位を起こします。

身近なところでは、オレフィンのヒドロホウ素化反応で対応するアルコールを得る際においても、酸化過程の素反応として重要な役割を担っています。

過酸化水素の代わりにアミンオキシドを用いた場合も同様です[1][2]

 

また、Zweifel Olefinationにおいてもボレートの形成と転位が鍵となっており、形式的には無触媒下で鈴木-宮浦クロスカップリングとは相補的な幾何異性体を与える合成上有用な反応です。

各種の全合成に頻用されるMatteson reactionも同様のプロセスで進行します[3][4]

ホウ素上の置換基が同一でない場合にどの置換基が転位するかは反応に依存し、膨大な検討が行われています[1][2]

イリドの求核攻撃によって形成されたホウ素アート錯体は、分子内に脱離基を有することから、続く1,2-メタレート転位によって有用な有機ホウ素化合物を与えることが知られており、古くから研究されています[5][6][7]

 

転位反応は発エルゴン過程であり、特にヒドリドの転位では熱暴走につながるような激しい発熱が観測されます。その熱力学的挙動については、イリドを用いたDSC測定により詳細に検討されています。転位を起こしやすい置換基ほど著しく発熱的に進行することが示されています[7]

Aggarwalらはキラルな硫黄イリドをとボランを反応させることにより、生成するアルコールの立体選択性を制御することに成功しています[8][9]

近年ではラジカル機構で進行する転位反応の例も発見されており、1,2-転位にとどまらず多彩な生成物へのアプローチが可能となっています[10]

最近では、反応中間体のイリド-ボランアート錯体が安定に存在することを活かしたリビング重合を用いたポリマーの精密合成など、高分子化学の領域でも応用が進められており、今後の進展に目が離せません[11][12]

 

参考文献

[1] V. K. Aggarwal et al. Pure Appl. Chem., 2006, 78, 2, pp. 215-229.

http://dx.doi.org/10.1351/pac200678020215

[2] A. Bottoni et al. J. Org. Chem., 2003, 68, 9, 3397-3405.

https://pubs.acs.org/doi/abs/10.1021/jo026733e

[3] E. J. Corey et al. Tetrahedron, 1997, 8, 22, 3711-3713.

https://doi.org/10.1016/S0957-4166(97)00528-4

[4] M. Mark Midland et al. J. Org. Chem., 1998, 63, 4, 914-915.

https://pubs.acs.org/doi/10.1021/jo972041s

[5] T. Röder et al. Angew. Chem. Int. Ed. Engl., 1981, 20, 1038-1039.

https://onlinelibrary.wiley.com/doi/10.1002/anie.198110381

[6] K. J. Shea. et al. Organometallics, 2003, 22, 1124-1131.

https://pubs.acs.org/doi/abs/10.1021/om0208568

[7] K. J. Shea. et al. Tetrahedron, 2004, 424, 149-155.

https://doi.org/10.1016/j.tca.2004.05.024

[8] V. K. Aggarwal et al. Org. Biomol. Chem., 2008, 6, 1185-1189.

https://doi.org/10.1039/B718496D

[9] V. K. Aggarwal et al. J. Am. Chem. Soc., 2007, 129, 14632-14639.

https://doi.org/10.1021/ja074110i

[10] A. Studer et al. J. Am. Chem. Soc., 2021, 143, 9320-9326.

https://doi.org/10.1021/jacs.1c04217

[11] N. Hadjichristidis et al. Angew. Chem. Int. Ed. Engl., 2019, 58, 6295-6299.

http://dx.doi.org/10.1002/anie.201901094

[12] N. Hadjichristidis et al. Angew. Chem. Int. Ed. Engl., 2021, 60, 8431-8434.

http://dx.doi.org/10.1002/anie.202015217

 

関連書籍

S. Matteson et al. he Matteson Reaction. In Organic Reactions.

https://doi.org/10.1002/0471264180.or105.03

K. Aggarwal et al. Chem. Record, 2009, 9, 24-39.

https://doi.org/10.1002/tcr.20168

gaming voltammetry

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. 超原子価ヨウ素 Hypervalent Iodine
  2. 硫酸エステルの合成 Synthesis of Organosul…
  3. 金属カルベノイドを用いるシクロプロパン化 Cyclopropan…
  4. デュボア アミノ化反応 Du Bois Amination
  5. ピーターソンオレフィン化 Peterson Olefinatio…
  6. チャン転位(Chan Rearrangement)
  7. ハンスディーカー反応 Hunsdiecker Reaction
  8. アンデルセン キラルスルホキシド合成 Andersen Chir…

注目情報

ピックアップ記事

  1. キャリー・マリス Kary Banks Mullis
  2. 樹脂コンパウンド材料におけるマテリアルズ・インフォマティクスの活用とは?
  3. TSMCを支える化学企業
  4. セントラル硝子、工程ノウハウも発明報奨制度対象に
  5. トーマス・エブソン Thomas Ebbesen
  6. カーボンニュートラル材料とマテリアルズ・インフォマティクス活用で実現するサステナブル社会
  7. 2009年ロレアル・ユネスコ女性科学者 日本奨励賞発表
  8. モビリティ用電池の化学: リチウムイオン二次電池から燃料電池まで(CSJ:44)
  9. 伊與木 健太 Kenta IYOKI
  10. スティーブン・レイ Steven V. Ley

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年7月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

第24回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP