[スポンサーリンク]

B

ブラウンヒドロホウ素化反応 Brown Hydroboration

[スポンサーリンク]

 

アルケン→アルコール
アルキン→アルデヒド、アルケン

 

概要

  • B-H結合のオレフィンへの位置・立体選択的syn-付加と、引き続くH2O2/NaOH酸化により、アルケンからanti-Markovnikov型アルコールが合成できる。オキシ水銀化や水和反応ではMarkovnikov型アルコールしか得られないため、これと相補的に用いることができる。アルキンを原料として用いれば、カルボニル化合物が合成可能。
  • 最も基本的な反応剤であるボラン(BH3)は、二量体のジボランとして存在している。これは有毒気体であり、反応性もそれほど高くないため実際には用いにくい。
  • 単量体にする目的で配位子を結合させたボラン錯体(BH3・L)が現実には多用される。配位子としてはTHF、ジメチルスルフィド、アミンなどが代表的である。また、これらボラン錯体は溶液状態で市販されており、簡便に使用できる。
  • しかし、ボラン錯体を用いる場合は、ヒドロホウ素化の位置/立体/官能基選択性に難を示す場合が少なくない。この問題は、ボランに巨大な置換基を導入することで解決できる。BとHの電気陰性度にはそれほど差が無く、静電的要因よりはむしろ立体障害の影響が大きいためである。下に代表的な反応剤を示す。酸素官能基を持つカテコールボランやピナコールボランのヒドロホウ素化は遅く、遷移金属触媒を必要とする場合もある。

brown_hydroboration_4.gif

  • 置換基をキラルなものとした光学活性ボランを用いれば、光学活性アルコールも合成可能である。特に天然物から誘導されるジイソピノカンフェイルボラン(Ipc2BH)は実用性が高く、大量スケールの反応にも多用される。brown_hydroboration_5.gif
  • 近年ではパラジウムによるカップリング反応が発達し、ヒドロホウ素化→鈴木-宮浦クロスカップリングという連続的な変換によって、炭素-炭素結合を良好な収率で合成できるようになった。
  • Purdue大学のH.C.Brown教授は本反応の開発を含めた有機ホウ素化学発展の業績により、G.Wittigとともに1979年のノーベル化学賞を受賞している。

基本文献

Review

 

反応機構

①B-H結合の付加:まず、オレフィンとB上の空軌道が相互作用してπ錯体を形成する。その後協奏的なsyn付加機構で進む。
②B-C結合の酸化的開裂:まず、B上の空軌道に過酸化水素の共役塩基が配位する。その後ヒドロキシル基が脱離する形で転位反応を起こす。炭素原子上の立体化学は保持される。
brown_hydroboration_7.gif

反応例

  • 9-BBNによる位置選択性の改善例
    brown_hydroboration_3.gif

 

  • 過酸化水素の代わりに、ヒドロキシルアミンスルホン酸塩やクロラミンで酸化を行うとアミンが合成できる。
    brown_hydroboration_8.gif

 

  • トリアルキルホウ素化合物を一酸化炭素存在下高温で反応させると、アルキル基が全てカルボニル炭素に転位する。引き続き加水分解を行うことで、三級アルコールが合成可能。本法により通常合成の難しいかさ高いアルコールも合成できる。中間体ボラエポキシドからの転位は非常に遅いため、系中に水を添加しておくと3つめのアルキル基の転位が抑えられる。これにより2級アルコールもしくはケトンの合成も可能となる。また、LiBH4などのヒドリド源を共存させて反応を行うと、アルキル基が一つ転位したボラケトンの段階で還元され、第一級アルコールもしくはアルデヒドを得ることが出来る。以下にまとめる。
    brown_hydroboration_11.gif
    brown_hydroboration_10.gif

 

  • 触媒量のRh(I)存在下末端アルキンへヒドロホウ素化を行うと、通常とは異なるZ-ビニルホウ素化合物が合成できる。[1]ロジウムビニリデン中間体を経由すると考えられている。
    brown_hydroboration_6.gif

 

  • 条件によって位置選択性を完全に逆転させることも可能となっている。Rh触媒を用いるケースでは、ケトンなどよりもオレフィンが優先して反応する。配位性官能基を持つ基質において、Crabtree触媒を用いたヒドロホウ素化[2]を行うと、directing効果によるジアステレオ選択性が発現する。
    brown_hydroboration_13.gifbrown_hydroboration_14.gif

 

  • 巧みな立体選択的Hydroborationにより、岸らによってMonensinの全合成が達成されている。[3]
    アリル位反発を避けるよう最安定配座をとったとき、立体障害の少ない方からボランが付加するモデルで選択性は説明される。
    brown_hydroboration_9.gif
  • ピリジン・ボラン錯体を用いると、室温でヒドロホウ素化が進行する。ボラン・THF錯体とは異なり、一置換で反応が停止する。得られたホウ素化体はさまざまな有用化合物へと変換可能である。[4]
    brown_hydroboration_12.gif

 

  • B(C6F5)3添加による反応性向上[5]:Rh触媒を用いたヒドロホウ素化反応において、B(C6F5)3添加が反応性および位置選択性において劇的な影響を与える。B(C6F5)3は、ピナコールボランのヒドリドと複合体をつくり、酸化的付加を促進させる効果を示している。

2016-01-30_15-18-46

  • トランス選択的なヒドロホウ素化反応[6]:[Cp*Ru(MeCN)3]PF6(Cp*=η5-C5Me5) を触媒として用いると、内部アルキンへのヒドロホウ素化がトランス選択的に進行する。

ncontent

  • インドールの触媒的不斉ヒドロホウ素化反応[7]: 脱芳香族化を伴う不斉ヒドロホウ素化反応。2位にエステルをもつインドール類に対し、銅(I)触媒による脱芳香族不斉ヒドロホウ素化反応が高ジアステレオかつエナンチオ選択的に進行する

2016-01-30_15-13-50

 

 

実験手順

実験のコツ・テクニック

参考文献

  1.  Ohmura, T.; Yamamoto, Y.; Miyaura, N. J. Am. Chem. Soc. 2000, 122, 4990.DOI: 10.1021/ja0002823
  2.  (a) Evans, D. A.; Fu, G. C.J. Am. Chem. Soc. 1991113, 4042. DOI: 10.1021/ja00010a083 (b) Evans, D. A.; Fu, G. C.; Hoveyda, A. H. J. Am. Chem. Soc. 1992, 114, 6671. DOI: 10.1021/ja00043a009
  3. Schmid, G.; Fukuyama, T.; Akasaka, K.; Kishi, Y. J. Am. Chem. Soc. 1979, 101, 259. DOI: 10.1021/ja00495a064
  4. Clay, J. M.; Vedejs, E. J. Am. Chem. Soc. 2005127, 5766. DOI: 10.1021/ja043743j
  5. Lata, C. J.; Crudden, C. M. J. Am. Chem. Soc. 2010, 132,131. DOI:10.1021/ja904142m
  6. Sundararaju, B.; Fürstner, A. Angew. Chem. Int. Ed. 2013, 52, 14050. DOI: 10.1002/anie.201307584
  7. Kubota, K.; Hayama, K.; Iwamoto, H.; Ito, H. Angew. Chem. Int. Ed. 201554, 8809. DOI: 10.1002/anie.201502964

 

関連反応

 

関連書籍

知っておきたい有機反応100 第2版

知っておきたい有機反応100 第2版

¥2,970(as of 02/01 15:15)
Amazon product information
Hydroboration and Organic Synthesis: 9-Borabicyclo [3.3.1] nonane (9-BBN) (English Edition)

Hydroboration and Organic Synthesis: 9-Borabicyclo [3.3.1] nonane (9-BBN) (English Edition)

Dhillon, Ranjit S.
¥25,239(as of 01/31 18:18)
Release date: 2007/05/01
Amazon product information

外部リンク

関連記事

  1. 山口マクロラクトン化 Yamaguchi Macrolacton…
  2. コーリー・チャイコフスキー反応 Corey-Chaykovsky…
  3. 高井・内本オレフィン合成 Takai-Utimoto Olefi…
  4. フィッツィンガー キノリン合成 Pfitzinger Quino…
  5. パターノ・ビューチ反応 Paterno-Buchi Reacti…
  6. クライゼン転位 Claisen Rearrangement
  7. ティフェノー・デミヤノフ転位 Tiffeneau-Demjano…
  8. 福山クロスカップリング Fukuyama Cross Coupl…

注目情報

ピックアップ記事

  1. 不斉Corey-Chaykovskyエポキシド合成を鍵としたキニーネ・キニジンの選択的合成
  2. 有機合成化学協会誌2018年4月号:脱カルボニル型カップリング反応・キレートアミン型イリジウム触媒・キラルリン酸・アリル銅中間体・窒素固定
  3. ファイトスルフォカイン (phytosulfokine)
  4. 印象に残った天然物合成1
  5. 高専シンポジウム in KOBE に参加しました –その 2: 牛の尿で発電!? 卵殻膜を用いた燃料電池–
  6. 小さなフッ素をどうつまむのか
  7. CAS Future Leaders Program 2023 参加者インタビュー
  8. アレクセイ・チチバビン ~もうひとりのロシア有機化学の父~
  9. Carl Boschの人生 その7
  10. 抗生物質の話

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

リサイクル・アップサイクルが可能な植物由来の可分解性高分子の開発

第694回のスポットライトリサーチは、横浜国立大学大学院理工学府(跡部・信田研究室)卒業生の瀬古達矢…

第24回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP