[スポンサーリンク]

B

ブラウンヒドロホウ素化反応 Brown Hydroboration

[スポンサーリンク]

アルケン→アルコール
アルキン→アルデヒド、アルケン

 

概要

  • B-H結合のオレフィンへの位置・立体選択的syn-付加と、引き続くH2O2/NaOH酸化により、アルケンからanti-Markovnikov型アルコールが合成できる。オキシ水銀化や水和反応ではMarkovnikov型アルコールしか得られないため、これと相補的に用いることができる。アルキンを原料として用いれば、カルボニル化合物が合成可能。
  • 最も基本的な反応剤であるボラン(BH3)は、二量体のジボランとして存在している。これは有毒気体であり、反応性もそれほど高くないため実際には用いにくい。
  • 単量体にする目的で配位子を結合させたボラン錯体(BH3・L)が現実には多用される。配位子としてはTHF、ジメチルスルフィド、アミンなどが代表的である。また、これらボラン錯体は溶液状態で市販されており、簡便に使用できる。
  • しかし、ボラン錯体を用いる場合は、ヒドロホウ素化の位置/立体/官能基選択性に難を示す場合が少なくない。この問題は、ボランに巨大な置換基を導入することで解決できる。BとHの電気陰性度にはそれほど差が無く、静電的要因よりはむしろ立体障害の影響が大きいためである。下に代表的な反応剤を示す。酸素官能基を持つカテコールボランやピナコールボランのヒドロホウ素化は遅く、遷移金属触媒を必要とする場合もある。

brown_hydroboration_4.gif

  • 置換基をキラルなものとした光学活性ボランを用いれば、光学活性アルコールも合成可能である。特に天然物から誘導されるジイソピノカンフェイルボラン(Ipc2BH)は実用性が高く、大量スケールの反応にも多用される。brown_hydroboration_5.gif
  • 近年ではパラジウムによるカップリング反応が発達し、ヒドロホウ素化→鈴木-宮浦クロスカップリングという連続的な変換によって、炭素-炭素結合を良好な収率で合成できるようになった。
  • Purdue大学のH.C.Brown教授は本反応の開発を含めた有機ホウ素化学発展の業績により、G.Wittigとともに1979年のノーベル化学賞を受賞している。

基本文献

Review

 

反応機構

①B-H結合の付加:まず、オレフィンとB上の空軌道が相互作用してπ錯体を形成する。その後協奏的なsyn付加機構で進む。
②B-C結合の酸化的開裂:まず、B上の空軌道に過酸化水素の共役塩基が配位する。その後ヒドロキシル基が脱離する形で転位反応を起こす。炭素原子上の立体化学は保持される。
brown_hydroboration_7.gif

反応例

  • 9-BBNによる位置選択性の改善例
    brown_hydroboration_3.gif

 

  • 過酸化水素の代わりに、ヒドロキシルアミンスルホン酸塩やクロラミンで酸化を行うとアミンが合成できる。
    brown_hydroboration_8.gif

 

  • トリアルキルホウ素化合物を一酸化炭素存在下高温で反応させると、アルキル基が全てカルボニル炭素に転位する。引き続き加水分解を行うことで、三級アルコールが合成可能。本法により通常合成の難しいかさ高いアルコールも合成できる。中間体ボラエポキシドからの転位は非常に遅いため、系中に水を添加しておくと3つめのアルキル基の転位が抑えられる。これにより2級アルコールもしくはケトンの合成も可能となる。また、LiBH4などのヒドリド源を共存させて反応を行うと、アルキル基が一つ転位したボラケトンの段階で還元され、第一級アルコールもしくはアルデヒドを得ることが出来る。以下にまとめる。
    brown_hydroboration_11.gif
    brown_hydroboration_10.gif

 

  • 触媒量のRh(I)存在下末端アルキンへヒドロホウ素化を行うと、通常とは異なるZ-ビニルホウ素化合物が合成できる。[1]ロジウムビニリデン中間体を経由すると考えられている。
    brown_hydroboration_6.gif

 

  • 条件によって位置選択性を完全に逆転させることも可能となっている。Rh触媒を用いるケースでは、ケトンなどよりもオレフィンが優先して反応する。配位性官能基を持つ基質において、Crabtree触媒を用いたヒドロホウ素化[2]を行うと、directing効果によるジアステレオ選択性が発現する。
    brown_hydroboration_13.gifbrown_hydroboration_14.gif

 

  • 巧みな立体選択的Hydroborationにより、岸らによってMonensinの全合成が達成されている。[3]
    アリル位反発を避けるよう最安定配座をとったとき、立体障害の少ない方からボランが付加するモデルで選択性は説明される。
    brown_hydroboration_9.gif
  • ピリジン・ボラン錯体を用いると、室温でヒドロホウ素化が進行する。ボラン・THF錯体とは異なり、一置換で反応が停止する。得られたホウ素化体はさまざまな有用化合物へと変換可能である。[4]
    brown_hydroboration_12.gif

 

  • B(C6F5)3添加による反応性向上[5]:Rh触媒を用いたヒドロホウ素化反応において、B(C6F5)3添加が反応性および位置選択性において劇的な影響を与える。B(C6F5)3は、ピナコールボランのヒドリドと複合体をつくり、酸化的付加を促進させる効果を示している。

2016-01-30_15-18-46

  • トランス選択的なヒドロホウ素化反応[6]:[Cp*Ru(MeCN)3]PF6(Cp*=η5-C5Me5) を触媒として用いると、内部アルキンへのヒドロホウ素化がトランス選択的に進行する。

ncontent

  • インドールの触媒的不斉ヒドロホウ素化反応[7]: 脱芳香族化を伴う不斉ヒドロホウ素化反応。2位にエステルをもつインドール類に対し、銅(I)触媒による脱芳香族不斉ヒドロホウ素化反応が高ジアステレオかつエナンチオ選択的に進行する

2016-01-30_15-13-50

 

 

実験手順

実験のコツ・テクニック

参考文献

  1.  Ohmura, T.; Yamamoto, Y.; Miyaura, N. J. Am. Chem. Soc. 2000, 122, 4990.DOI: 10.1021/ja0002823
  2.  (a) Evans, D. A.; Fu, G. C.J. Am. Chem. Soc. 1991113, 4042. DOI: 10.1021/ja00010a083 (b) Evans, D. A.; Fu, G. C.; Hoveyda, A. H. J. Am. Chem. Soc. 1992, 114, 6671. DOI: 10.1021/ja00043a009
  3. Schmid, G.; Fukuyama, T.; Akasaka, K.; Kishi, Y. J. Am. Chem. Soc. 1979, 101, 259. DOI: 10.1021/ja00495a064
  4. Clay, J. M.; Vedejs, E. J. Am. Chem. Soc. 2005127, 5766. DOI: 10.1021/ja043743j
  5. Lata, C. J.; Crudden, C. M. J. Am. Chem. Soc. 2010, 132,131. DOI:10.1021/ja904142m
  6. Sundararaju, B.; Fürstner, A. Angew. Chem. Int. Ed. 2013, 52, 14050. DOI: 10.1002/anie.201307584
  7. Kubota, K.; Hayama, K.; Iwamoto, H.; Ito, H. Angew. Chem. Int. Ed. 201554, 8809. DOI: 10.1002/anie.201502964

 

関連反応

 

関連書籍

外部リンク

The following two tabs change content below.
Hiro

Hiro

Hiro

最新記事 by Hiro (全て見る)

関連記事

  1. ジスルフィド架橋型タンパク質修飾法 Disulfide-Brid…
  2. フェルキン・アーン モデル Felkin-Anh Model
  3. 向山アルドール反応 Mukaiyama Aldol Reacti…
  4. ローゼンムント還元 Rosenmund Reduction
  5. 向山水和反応 Mukaiyama Hydration
  6. 金属水素化物による還元 Reduction with Metal…
  7. ライセルト反応 Reissert Reaction
  8. 求電子的フッ素化剤 Electrophilic Fluorina…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 1,4-ジ(2-チエニル)-1,4-ブタンジオン:1,4-Di(2-thienyl)-1,4-butanedione
  2. アロイ・フュルストナー Alois Furstner
  3. ペニシリン ぺにしりん penicillin
  4. 「不斉化学」の研究でイタリア化学会主催の国際賞を受賞-東理大硤合教授-
  5. 2016年1月の注目化学書籍
  6. 【追悼企画】化学と生物で活躍できる化学者ーCarlos Barbas教授
  7. 根岸試薬(Cp2Zr) Negishi Reagent
  8. 位置およびエナンチオ選択的Diels-Alder反応に有効な不斉有機触媒
  9. ジェフリー・ムーア Jeffrey S. Moore
  10. 塩野義 抗インフルエンザ薬を承認申請

関連商品

注目情報

注目情報

最新記事

お前はもう死んでいる:不安定な試薬たち|第4回「有機合成実験テクニック」(リケラボコラボレーション)

理系の理想の働き方を考える研究所「リケラボ」とコラボレーションとして「有機合成実験テクニック」の特集…

第60回―「エネルギー・環境化学に貢献する金属-有機構造体」Martin Schröder教授

第60回の海外化学者インタビューは、マーティン・シュレーダー教授です。ノッティンガム大学化学科(訳注…

炭素置換Alアニオンの合成と性質の解明

第249回のスポットライトリサーチは、名古屋大学大学院工学研究科(山下研究室)・車田 怜史 さんにお…

第59回―「機能性有機ナノチューブの製造」清水敏美 教授

第59回の海外化学者インタビューは日本から、清水敏美 教授です。独立行政法人産業技術総合研究所(AI…

高分子鎖デザインがもたらすポリマーサイエンスの再創造 進化する高分子材料 表面・界面制御アドバンスト コース

詳細・お申込みはこちら日時2020年 4月16日(木)、17日(金)全日程2日間  …

光で水素を放出する、軽量な水素キャリア材料の開発

第248回のスポットライトリサーチは、東京工業大学物質理工学院(宮内研究室)・河村 玲哉さんにお願い…

Chem-Station Twitter

PAGE TOP