[スポンサーリンク]

O

硫酸エステルの合成 Synthesis of Organosulfate

[スポンサーリンク]

概要

硫酸エステル(organosulfate)は様々な生物活性化合物に存在する官能基である。また加水分解によりアルコールを放出するため、水溶性を高める目的でのプロドラッグとしても活用される。
古典的には硫酸やスルファミン酸などが硫酸化剤として使用されてきた。ただし、脱水条件(Dean-Stark装置や縮合剤など)を必要とし、強酸性であるため副反応を併発させやすいという難点がある。
反応活性種であるSO3は気体であるため取扱いが難しい。この事情から常温で固体であり安定性も高いSO3・ルイス塩基錯体を用いて硫酸化を行なう手法が一般的に用いられる。
それでもなお、往々にしてイオン性生成物が精製困難であったり、脱離が競合したり、穏和な条件で進行しづらいことなどにも課題を残している。

基本文献

<Review>

反応機構

SO3・ルイス塩基錯体は結合ルイス塩基の強さに従って反応性は弱まる。概ね下記の順列に従う。

反応進行に伴いanionic overcrowdingが起き、有機溶媒への溶解性も下がる傾向にあるため、複数のヒドロキシル基をポリ硫酸化することは一般的に困難である。

また、水中でも実施可能な硫酸化反応は未解決課題の一つである。

反応例

SO3等価体を用いる合成

ステロイドの硫酸化[1]

マイクロウェーブ条件を用いる硫酸化[2]:ポリフェノールのポリ硫酸化は特に難しいが、この方法だと収率良く目的物が得られる。

酸触媒を用いる硫酸化[3]:塩基性条件と異なり、低温で進行するのが特徴。SO3に配位しているアミンをプロトン化し、SO3を遊離させることが鍵と考えられている。

保護体を経由する合成

電荷をもたない中間体を経由するため、精製容易であることが最大の利点である。一方でスルホン酸の保護基として実用的なものは希少であるため、報告例は限定的である。アルキル化剤として機能しづらく、穏和な条件で脱保護可能な、下記構造が活用される。

フェニルサルフェート[4]:脱保護過程の収率がばらつくため、実施例は少なめ。

トリフルオロエチルサルフェート[5]:保護に毒性・爆発性のジアゾ化合物を使用する必要があり、脱保護条件もきつめなので、実用性は低めである。

トリクロロエチルサルフェート[6]:本稿で紹介する中ではもっとも実用性が高い。硫酸アリールエステルを合成する目的に適している。

しかし脂肪族アルコールに対して本法を行なうと、しばしばクロロ化が併発してしまう。これを避けるためにメチルイミダゾリウム型試薬が開発されている[7]。

硫酸化チロシン含有ペプチドは生物活性物質探索目的で特によく合成される。しかしながら硫酸基が特に酸性条件で分解されやすいため、合成には格別のケアが必要となる[8]。トリクロロエチルサルフェートはBoc法やレジン切り出しにつかわれる強酸に安定であるため、ペプチド固相合成において硫酸化チロシンを組み込む目的に使われる。しかしながらFmoc法で用いられる有機塩基にトリクロロエトキシスルホニル基は不安定であるため、用いることができない。この応用目的に、塩基への安定性を高めたジクロロビニル型保護基が開発されている[9]。

ネオペンチル/イソブチルサルフェート[10]:求核置換条件にて除去可能。

フルオロサルフェート[11]:SuFEx反応の応用で、Late-Stageでの硫酸基変換が行える。ペプチド固相合成条件にも耐える。

実験手順

SO3・Py試薬の合成[12]

市販品はしばしば結果が安定しないので、自前調製品の使用を推奨する。

滴下漏斗、メカニカルスターラー、温度計を備えた3径フラスコ内に、脱水ピリジン(62 g)の脱水クロロホルム(350 mL)溶液を入れる。氷冷下にクロロスルホン酸(38.5 g)を攪拌子ながらゆっくり加える。滴下速度は反応液の温度が0℃付近に保たれるように調節する。反応終了後、固体をブフナー漏斗でろ過し、氷冷クロロホルムで素早く洗浄する(30-40mL × 4)。溶媒を減圧乾燥して目的物を白色固体として得る(33 g, 収率62%)。生成物は少量のピリジン硫酸塩を含む。

参考文献

  1. Kakiyama, G.; Muto, A.; Shimada, M.; Mano, N.; Goto, J.; Hofmann, A. F.; Iida, T. Steroids 2009, 74, 766. doi:10.1016/j.steroids.2009.04.007
  2. Raghuraman, A.; Riaz, M.; Hindle, M.; Desai, U. R. Tetrahedron Lett. 2007, 48, 6754. doi:10.1016/j.tetlet.2007.07.100
  3. Krylov, V. B.; Ustyuzhanina, N. E.; Grachev, A. A.; Nifantiev, N. E. Tetrahedron Lett. 2008, 49, 5877. doi:10.1016/j.tetlet.2008.07.135
  4. Penney, C. L.; Perlin, A. S. Carbohydr. Res. 1981, 93, 241. doi:10.1016/S0008-6215(00)80853-8
  5. Proud, A. D.; Prodger, J. C.; Flitsch, S. L. Tetrahedron Lett. 1997, 38, 7243. doi:10.1016/S0040-4039(97)01681-X
  6. (a) Liu, Y.; Lien, I.-F. F.; Ruttgaizer, S.; Dove, P.; Taylor, S. D. Org. Lett. 2004, 6, 209. doi:10.1021/ol036157o (b) Gunnarsson, T. G.; Riaz, M.; Adams, J.; Desai, U. R. Bioorg. Med. Chem. 2005, 13, 1783. doi:10.1016/j.bmc.2004.11.060
  7. (a) Ingram, L. J.; Taylor, S. D. Angew. Chem., Int. Ed. 2006, 45, 3503. doi:10.1002/anie.200600153  (b) Ingram, L. J.; Desoky, A.; Ali, A. M.; Taylor, S. J. Org. Chem. 2009, 74, 6479. DOI: 10.1021/jo9014112
  8. (a) Fujii, N.; Futaki, S.; Funakoshi, S.; Akaji, K.; Morimoto, H.; Doi, R.; Inoue, K.; Kogire, M.; Sumi, S.; Yun, M.; Tobe, T.; Aono, M.; Matsuda, M.; Narusawa, H.; Moriga, M.; Yajima, H. Chem. Pharm. Bull. 1988, 36, 3281. doi:10.1248/cpb.36.3281 (b) Futaki, S.; Taike, T.; Yagami, T.; Ogawa, T.; Akita, T.; Kitagawa, K. J. Chem. Soc., Perkin Trans. 1 1990, 1739. doi:10.1039/P19900001739 (c)  Young, T.; Kiessling, L. L. Angew. Chem. Int. Ed. 2002, 41, 3449. [abstract] (d) Taleski, D.;  Butler, S. J.; Stone, M. J.; Payne, R. J. Chem. Asian J. 2011, 6, 1316. doi:10.1002/asia.201100232
  9. Ali, A. M.; Taylor, S. D. Angew. Chem., Int. Ed. 2009, 44, 2024. doi: 10.1002/anie.200805642
  10. Simpson, L. S.; Widlanski, T. S.  J. Am. Chem. Soc. 2006, 128, 1605. DOI: 10.1021/ja056086j
  11. Chen, W.; Dong, J.; Li, S.; Liu, Y.; Wang, Y.; Yoon, L.; Wu, P.; Sharpless, K. B.; Kelly, J. W. Angew. Chem. Int. Ed. 2016, 55, 1835. doi:10.1002/anie.201509016
  12. Sisler, H. H.; Audrieth, L. F. Inorg. Synth. 1946, 2, 173.

関連反応

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 金属カルベノイドのC-H挿入反応 C-H Insertion o…
  2. マイヤース・斉藤環化 Myers-Saito Cyclizati…
  3. バートン・ケロッグ反応 Barton-Kellogg React…
  4. ディークマン縮合 Dieckmann Condensation
  5. ハリース オゾン分解 Harries Ozonolysis
  6. ヒドロシリル化反応 Hydrosilylation
  7. ボラン錯体 Borane Complex (BH3・L)
  8. ライマー・チーマン反応 Reimer-Tiemann React…

注目情報

ピックアップ記事

  1. 第75回―「分子素子を網状につなげる化学」Omar Yaghi教授
  2. ムギネ酸は土から根に鉄分を運ぶ渡し舟
  3. 高純度化学研究所が実物周期標本を発売開始
  4. ノーベル博物館
  5. ポンコツ博士の海外奮闘録⑩ 〜博士,中和する〜
  6. クリスチャン・ハートウィッグ Christian Hertweck
  7. アルカロイド alkaloid
  8. 太陽ホールディングスってどんな会社?
  9. 触媒表面の化学反応をナノレベルでマッピング
  10. サレン-Mn錯体

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年1月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP