[スポンサーリンク]

O

硫酸エステルの合成 Synthesis of Organosulfate

[スポンサーリンク]

概要

硫酸エステル(organosulfate)は様々な生物活性化合物に存在する官能基である。また加水分解によりアルコールを放出するため、水溶性を高める目的でのプロドラッグとしても活用される。
古典的には硫酸やスルファミン酸などが硫酸化剤として使用されてきた。ただし、脱水条件(Dean-Stark装置や縮合剤など)を必要とし、強酸性であるため副反応を併発させやすいという難点がある。
反応活性種であるSO3は気体であるため取扱いが難しい。この事情から常温で固体であり安定性も高いSO3・ルイス塩基錯体を用いて硫酸化を行なう手法が一般的に用いられる。
それでもなお、往々にしてイオン性生成物が精製困難であったり、脱離が競合したり、穏和な条件で進行しづらいことなどにも課題を残している。

基本文献

<Review>

反応機構

SO3・ルイス塩基錯体は結合ルイス塩基の強さに従って反応性は弱まる。概ね下記の順列に従う。

反応進行に伴いanionic overcrowdingが起き、有機溶媒への溶解性も下がる傾向にあるため、複数のヒドロキシル基をポリ硫酸化することは一般的に困難である。

また、水中でも実施可能な硫酸化反応は未解決課題の一つである。

反応例

SO3等価体を用いる合成

ステロイドの硫酸化[1]

マイクロウェーブ条件を用いる硫酸化[2]:ポリフェノールのポリ硫酸化は特に難しいが、この方法だと収率良く目的物が得られる。

酸触媒を用いる硫酸化[3]:塩基性条件と異なり、低温で進行するのが特徴。SO3に配位しているアミンをプロトン化し、SO3を遊離させることが鍵と考えられている。

保護体を経由する合成

電荷をもたない中間体を経由するため、精製容易であることが最大の利点である。一方でスルホン酸の保護基として実用的なものは希少であるため、報告例は限定的である。アルキル化剤として機能しづらく、穏和な条件で脱保護可能な、下記構造が活用される。

フェニルサルフェート[4]:脱保護過程の収率がばらつくため、実施例は少なめ。

トリフルオロエチルサルフェート[5]:保護に毒性・爆発性のジアゾ化合物を使用する必要があり、脱保護条件もきつめなので、実用性は低めである。

トリクロロエチルサルフェート[6]:本稿で紹介する中ではもっとも実用性が高い。硫酸アリールエステルを合成する目的に適している。

しかし脂肪族アルコールに対して本法を行なうと、しばしばクロロ化が併発してしまう。これを避けるためにメチルイミダゾリウム型試薬が開発されている[7]。

硫酸化チロシン含有ペプチドは生物活性物質探索目的で特によく合成される。しかしながら硫酸基が特に酸性条件で分解されやすいため、合成には格別のケアが必要となる[8]。トリクロロエチルサルフェートはBoc法やレジン切り出しにつかわれる強酸に安定であるため、ペプチド固相合成において硫酸化チロシンを組み込む目的に使われる。しかしながらFmoc法で用いられる有機塩基にトリクロロエトキシスルホニル基は不安定であるため、用いることができない。この応用目的に、塩基への安定性を高めたジクロロビニル型保護基が開発されている[9]。

ネオペンチル/イソブチルサルフェート[10]:求核置換条件にて除去可能。

フルオロサルフェート[11]:SuFEx反応の応用で、Late-Stageでの硫酸基変換が行える。ペプチド固相合成条件にも耐える。

実験手順

SO3・Py試薬の合成[12]

市販品はしばしば結果が安定しないので、自前調製品の使用を推奨する。

滴下漏斗、メカニカルスターラー、温度計を備えた3径フラスコ内に、脱水ピリジン(62 g)の脱水クロロホルム(350 mL)溶液を入れる。氷冷下にクロロスルホン酸(38.5 g)を攪拌子ながらゆっくり加える。滴下速度は反応液の温度が0℃付近に保たれるように調節する。反応終了後、固体をブフナー漏斗でろ過し、氷冷クロロホルムで素早く洗浄する(30-40mL × 4)。溶媒を減圧乾燥して目的物を白色固体として得る(33 g, 収率62%)。生成物は少量のピリジン硫酸塩を含む。

参考文献

  1. Kakiyama, G.; Muto, A.; Shimada, M.; Mano, N.; Goto, J.; Hofmann, A. F.; Iida, T. Steroids 2009, 74, 766. doi:10.1016/j.steroids.2009.04.007
  2. Raghuraman, A.; Riaz, M.; Hindle, M.; Desai, U. R. Tetrahedron Lett. 2007, 48, 6754. doi:10.1016/j.tetlet.2007.07.100
  3. Krylov, V. B.; Ustyuzhanina, N. E.; Grachev, A. A.; Nifantiev, N. E. Tetrahedron Lett. 2008, 49, 5877. doi:10.1016/j.tetlet.2008.07.135
  4. Penney, C. L.; Perlin, A. S. Carbohydr. Res. 1981, 93, 241. doi:10.1016/S0008-6215(00)80853-8
  5. Proud, A. D.; Prodger, J. C.; Flitsch, S. L. Tetrahedron Lett. 1997, 38, 7243. doi:10.1016/S0040-4039(97)01681-X
  6. (a) Liu, Y.; Lien, I.-F. F.; Ruttgaizer, S.; Dove, P.; Taylor, S. D. Org. Lett. 2004, 6, 209. doi:10.1021/ol036157o (b) Gunnarsson, T. G.; Riaz, M.; Adams, J.; Desai, U. R. Bioorg. Med. Chem. 2005, 13, 1783. doi:10.1016/j.bmc.2004.11.060
  7. (a) Ingram, L. J.; Taylor, S. D. Angew. Chem., Int. Ed. 2006, 45, 3503. doi:10.1002/anie.200600153  (b) Ingram, L. J.; Desoky, A.; Ali, A. M.; Taylor, S. J. Org. Chem. 2009, 74, 6479. DOI: 10.1021/jo9014112
  8. (a) Fujii, N.; Futaki, S.; Funakoshi, S.; Akaji, K.; Morimoto, H.; Doi, R.; Inoue, K.; Kogire, M.; Sumi, S.; Yun, M.; Tobe, T.; Aono, M.; Matsuda, M.; Narusawa, H.; Moriga, M.; Yajima, H. Chem. Pharm. Bull. 1988, 36, 3281. doi:10.1248/cpb.36.3281 (b) Futaki, S.; Taike, T.; Yagami, T.; Ogawa, T.; Akita, T.; Kitagawa, K. J. Chem. Soc., Perkin Trans. 1 1990, 1739. doi:10.1039/P19900001739 (c)  Young, T.; Kiessling, L. L. Angew. Chem. Int. Ed. 2002, 41, 3449. [abstract] (d) Taleski, D.;  Butler, S. J.; Stone, M. J.; Payne, R. J. Chem. Asian J. 2011, 6, 1316. doi:10.1002/asia.201100232
  9. Ali, A. M.; Taylor, S. D. Angew. Chem., Int. Ed. 2009, 44, 2024. doi: 10.1002/anie.200805642
  10. Simpson, L. S.; Widlanski, T. S.  J. Am. Chem. Soc. 2006, 128, 1605. DOI: 10.1021/ja056086j
  11. Chen, W.; Dong, J.; Li, S.; Liu, Y.; Wang, Y.; Yoon, L.; Wu, P.; Sharpless, K. B.; Kelly, J. W. Angew. Chem. Int. Ed. 2016, 55, 1835. doi:10.1002/anie.201509016
  12. Sisler, H. H.; Audrieth, L. F. Inorg. Synth. 1946, 2, 173.

関連反応

外部リンク

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ヘメツバーガー インドール合成 Hemetsberger Ind…
  2. コルベ・シュミット反応 Kolbe-Schmitt Reacti…
  3. バルビエ・ウィーランド分解 Barbier-Wieland De…
  4. ボーチ還元的アミノ化反応 Borch Reductive Ami…
  5. ケネディ酸化的環化反応 Kennedy Oxydative Cy…
  6. ジ-π-メタン転位 Di-π-methane Rearrange…
  7. ハンチュ ピロール合成 Hantzsch Pyrrole Syn…
  8. ホフマン・レフラー・フレイターク反応 Hofmann-Loffl…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ルボトム酸化 Rubottom Oxidation
  2. ビス[α,α-ビス(トリフルオロメチル)ベンゼンメタノラト]ジフェニルサルファー : Bis[alpha,alpha-bis(trifluoromethyl)benzenemethanolato]diphenylsulfur
  3. IKCOC-15 ー今年の秋は京都で国際会議に参加しよう
  4. スーパーブレンステッド酸
  5. サイエンスアゴラの魅力を聞く-「iCeMS」水町先生
  6. ポーソン・カーン反応 Pauson-Khand Reaction
  7. もし炭素原子の手が6本あったら
  8. 原子一個の電気陰性度を測った! ―化学結合の本質に迫る―
  9. 2013年就活体験記(1)
  10. 化学と権力の不健全なカンケイ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年1月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

韮山反射炉に行ってみた

韮山反射炉は1857年に完成した静岡県伊豆の国市にある国指定の史跡(史跡名勝記念物)で、2015年に…

超高圧合成、添加剤が選択的物質合成の決め手に -電池材料等への応用に期待-

第565回のスポットライトリサーチは、東京工業大学 科学技術創成研究院 フロンティア材料研究所 東・…

「ハーバー・ボッシュ法を超えるアンモニア合成法への挑戦」を聴講してみた

bergです。この度は2023年9月8日(金)に慶応義塾大学 矢上キャンパスにて開催された西林教授の…

(+)-Pleiocarpamineの全合成と新規酸化的カップリング反応を基盤とした(+)-voacalgine Aおよび(+)-bipleiophyllineの全合成

第564回のスポットライトリサーチは、東北大学大学院薬学研究科分子薬科学専攻・医薬製造化学分野(徳山…

ResearchGateに対するACSとElsevierによる訴訟で和解が成立

2023年9月15日、米国化学会(ACS)とElsevier社がResearchGateに対して起こ…

マテリアルズ・インフォマティクスの基礎知識とよくある誤解

開催日:2023/10/04 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

理研、放射性同位体アスタチンの大量製造法を開発

理化学研究所 仁科加速器科学研究センター 核化学研究開発室、金属技研株式会社 技術開発本部 エン…

マイクロ波プロセスを知る・話す・考える ー新たな展望と可能性を探るパネルディスカッションー

<内容>参加いただくみなさまとご一緒にマイクロ波プロセスの新たな展望と可能性について探る、パ…

SFTSのはなし ~マダニとその最新情報 後編~

注意1:この記事は人によってはやや苦手と思われる画像を載せております ご注意ください注意2:厚生…

様々な化学分野におけるAIの活用

ENEOS株式会社と株式会社Preferred Networks(PFN)は、2023年1月に石油精…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP