[スポンサーリンク]

M

マッテソン増炭反応 Matteson Homologation

[スポンサーリンク]

概要

ボレート1,2-転位を経由する有機ホウ素化合物の増炭反応。ホウ素側にキラル補助基を導入しておくことで、不斉合成へも展開可能。

近年、Aggarwalらによる連続型モジュール合成戦略(アセンブリライン合成)において本反応の知見が広く活用されるようになり、再注目を集めている。

基本文献

<Review>

開発の歴史

ワシントン州立大学のDonald S. Matteson によって開発された。

Donald S. Matteson

反応機構

有機金属試薬とのボレート形成は低温で進行し、ルイス酸金属キレート(Zn, Mg)のアシストによって室温下に1,2-ボレート転位が進行する。ルイス酸キレート位置が各種置換基と立体反発を最小化する位置に規定されるために脱離基の方向が固定され、立体特異的な反応になる。

参考:Tetrahedron: Asymmetry 1997, 8, 3711; J. Org. Chem. 1998, 63, 914.

反応例

キラルボロン酸エステルを有する連続的不斉変換

α-アミノボロン酸の合成[1]

立体中心を持つシクロブタン環の合成[2]

天然物全合成への適用

Lagunamide Aの全合成[3]: 本法を用いて連続不斉点の制御と増炭が極めて効率的に行われている。

実験手順

Lagunamide A合成の第1工程[3]


General Procedure:

【LDA溶液の調製】無水THF (0.2 mL/mmol) 中のジイソプロピルアミン(1.35 eq)に、n-BuLi(1.6 M ヘキサン溶液、1.25 eq)を-40°Cでゆっくりと加えた。その後、混合物を室温で20分間撹拌した。

【増炭反応】シュレンクフラスコ中でキラルボロン酸エステル(1.0 eq)を無水THF (1.4 mL/mmol)に溶解し、続いて 無水ジクロロメタン(3.0 eq)を-40°Cで加えた。用時調製したLDA溶液を、冷却したフラスコ表面に流下させる形で、ゆっくりと添加した。さらに10分後、塩化亜鉛無水物(0.5 mL/mmol、2.0~4.0当量、無水THF溶液)を加え、冷却槽を除去し、反応液を室温で2~24時間撹拌した。

【求核置換】反応混合物を0°Cに冷却し、続いて求核剤溶液を添加した。冷却槽を除去したのち、室温で1~14日間撹拌した。

反応は飽和NH4Cl水溶液を加えることで停止させた。5分後に水を加え、水相をn−ペンタンで3回抽出した。合わせた有機層を乾燥し(Na2SO4)、濾過し、溶媒を減圧下で除去した。粗生成物を必要に応じてカラムクロマトグラフィーで精製した。

本工程では、ボロン酸エステル(1.96 g、7.83 mmol、1.0 eq)、無水ジクロロメタン(1.51 mL、d=1.32 g/mL、23.5 mmol、3.0 eq)、ジイソプロピルアミン(1.51 mL、d=0.71 g/mL、10.6 mmol、1.35 eq)、n-BuLi溶液(6.11 mL、1.6M in hexane、9.78 mmol、1.25 eq)、塩化亜鉛(2.13 g、15.7 mmol、2.0 eq)を反応させた。二時間後、更に臭化エチルマグネシウム溶液(19.6 mL、1.0M in THF、19.6 mmol、2.5eq)を加えて置換させた。後処理後、2.27 g (7.77 mmol、99%)の生成物を黄色油状物として単離した。

実験のコツ・テクニック

  • LiCHCl2はジクロロメタンからBuLi, -100℃で別バッチ調製、もしくはホウ素化合物の共存下、LDA, <-30℃で系中調製される。LiCHBr2も、ホウ素化合物の共存下にLDAで系中調製させて用いられる。

関連動画

 

参考文献

  1. (a) Matteson, D. S.; Sadhu, K. M.; Lienhard, G. E. J. Am. Chem. Soc. 1981, 103, 5241. doi:10.1021/ja00407a051 (b) Matteson, D. S.; Sadhu, K. M. Organometallics 1984, 3, 614. doi:10.1021/om00082a019
  2. Man, H.-W.; Hiscox, W. C.; Matteson, D. S. Org. Lett. 1999, 1, 379. doi:10.1021/ol990579+
  3. Gorges, J.; Kazmaier, U. Org. Lett. 2018, 20, 2033. doi:10.1021/acs.orglett.8b00576

関連書籍

関連反応

関連リンク

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. リード反応 Reed Reaction
  2. 菅沢反応 Sugasawa Reaction
  3. 水素化ホウ素亜鉛 Zinc Bodohydride
  4. ビシュラー・メーラウ インドール合成 Bischler-Mohl…
  5. NHPI触媒によるC-H酸化 C-H Oxidation wit…
  6. タングステン酸光触媒 Tungstate Photocataly…
  7. 硫黄-フッ素交換反応 Sulfur(VI)-Fluoride E…
  8. シモンズ・スミス反応 Simmons-Smith Reactio…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 細胞の分子生物学/Molecular Biology of the Cell
  2. 入門 レアアースの化学 
  3. ジョアン・スタビー JoAnne Stubbe
  4. 掃除してますか?FTIR-DRIFTチャンバー
  5. クレメンゼン還元 Clemmensen Reduction
  6. スイス連邦工科大ジーベーガー教授2007年ケーバー賞を受賞
  7. 活性二酸化マンガン Activated Manganese Dioxide (MnO2)
  8. 日本化学会第86春季年会(2006)
  9. 試薬会社にみるノーベル化学賞2010
  10. ノーベル化学賞 Nobel Prize in Chemistry

関連商品

注目情報

注目情報

最新記事

第51回―「超分子化学で生物学と材料科学の境界を切り拓く」Carsten Schmuck教授

第51回の海外化学者インタビューは、カルステン・シュムック教授です。ヴュルツブルク大学の有機化学研究…

乾燥剤の種類と合成化学での利用法

今回は溶液や化合物の乾燥と乾燥剤などについて話をしようかと思います。書いてみてかなり基本的な話になり…

第18回次世代を担う有機化学シンポジウム

今回の次世代シンポは一味違います!一般講演の優秀発表賞と優秀ディスカッション賞があるのはこれまで…

“秒”で分析 をあたりまえに―利便性が高まるSFC

分析化学に携わったことのある方は、「超臨界流体クロマトグラフィー」、略して「SFC」のことをご存知な…

第50回―「糖やキラル分子の超分子化学センサーを創り出す」Tony James教授

第50回の海外化学者インタビューは、トニー・ジェームズ教授です。英国バース大学の化学科で超分子化学の…

光/熱で酸化特性のオン/オフ制御が可能な分子スイッチの創出に成功

第244回のスポットライトリサーチは、北海道大学大学院総合化学院・林 裕貴さんにお願いしました。…

Chem-Station Twitter

PAGE TOP