[スポンサーリンク]

一般的な話題

計算化学:DFT計算って何?Part II

 

近年、DFT計算により実験結果をサポートする論文が増えて来ています。実験屋さんでも計算化学についての知識を持つことは必須となりつつあります。

しかし、DFTって何なのでしょうか?DFT計算が一般的になりつつある昨今、「DFT計算って何?」という基本的な質問をしにくい雰囲気があると思います。

周りの人に思い切って聞くことができず、夜中にこっそりWikipediaで調べてみても「密度汎関数法」と書いてあるだけで「???」な感じです。そう、計算化学を分かりやすく説明しているウェブサイト、教科書はあまりないのです。計算化学が一部の人にしか普及しないのは、難しいとかではなく、バイブル的な教科書が存在しないためだと個人的には思っています。

 

前回の「汎関数って何?」という記事のpart IIに当たる今回の記事では、量子化学計算のかんたんな歴史から説明し、次の記事(PartIII)と併せて、初心者の人でもDFT計算が何かを理解できるようにしようと思います。

今回の記事でも細かいところは省略していくので、詳細を知りたい勉強熱心な読者の方は一番下の参考図書を読んで下さいね!

 

量子力学の発展

量子化学歴史

前回の記事に書いたように、「物質の性質、反応性は、その物質の電子状態が分かれば予測できる」という考えに基づき、有機化学者は量子化学計算を行なっています。電子状態を知る=シュレーディンガー方程式を解くということになっています。

 

このシュレーディンガー方程式ですが、1926年に発表されています。さらにシュレーディンガー方程式に相対論を盛り込んだディラック方程式は1928年に発表されています。

この時期は量子力学が一気に進展したときで、ハートリー法(1928年Hartree)、スレーター行列式(1929年Slater)、ハートリーフォック法(1930年Fock, Slater)、分子軌道法(1926年Hund、1927年Mulliken)、メラープリセット摂動法(1934年Moller, Plesset)、TDHF法(1930年Dirac)LDA交換汎関数(1930年Dirac)など、まだまだ書ききれないくらい多くの理論が生み出されました。この時期のキーワードは、「実際の分子中のシュレーディンガー方程式をどのように解いたら良いのだろうか?」でした。

 

余談ですが、量子力学の歴史を勉強していると、さまざまな理論の提唱、開発で大きな貢献をしているDirac、、、天才過ぎだろって思ってしまいます。Diracは、ノーベル賞の受賞を「有名になるのが嫌だ」という理由で辞退しようとして、周りの人達に全力で止められたという少し変わった人なのですが、、、すごい人ですね。

 

さて、量子力学の歴史の説明に戻ります。この後、「分子の中の電子運動の波動関数をどのように解釈すればよいか?」ということをキーワードにし、混成軌道モデル(1928年Pauling)、遷移状態理論(1935年Eyring)、LCMO近似(1929年Lennard-Jones、1938年Coulson)、化学反応原理(1936年Bell、1938年Evans, Polanyi)などが発表されました。

 

ここまで、いろいろな理論を羅列してきましたが、要約すると

「シュレーディンガー方程式を厳密に解くのは不可能→近似的に解く理論の開発が1930年前後に盛んに行なわれた」

です。

 

DFT (密度汎関数法)の歴史

さて、ここまで紹介した理論は「シュレーディンガー方程式を解くことは難しいので近似的に解いてしまおう!」という感じでした。それに対し、DFTは「裏技的にハミルトニアンを求めてしまおう!」みたいなイメージです。

DFT

DFTの基礎理論となるトーマス・フェルミ理論は1927年に発表されました。簡単に言うと電子密度だけでハミルトニアン演算子を表わすことが出来ますよ!という理論です。

 

しかし、この理論には解の一意性や汎関数の存在を保証する物理的な裏付けは何も無く、また化学結合すら全く再現できないため、1960年まで忘れ去られていました。現在では皆が使っているDFTも、当時は「使えないな、コレ」みたいな感じだったんですね。

 

1964年、トーマス・フェルミ理論のコンセプトの正しさを物理的に裏付ける定理が提案されました。ホーエンベルグ・コーン定理です。これは下記の2つの定理からなっています。

1.外場ポテンシャルは電子密度で決定される。

2.あらゆる電子密度について、常にエネルギーの変分原理が成り立つ。

 

しかし、第一定理の証明で電子密度が波動関数と一対一対応すると仮定していることが若干問題であり、これはV表現可能性問題と呼ばれています。1979年レヴィは制限つき探索法を提案してこの問題を解決しました。また、第二定理の証明においてもN表現可能性問題という問題がありました。

 

コーン・シャム方程式

前回の記事ではDFT計算=コーン・シャム方程式のような書き方をしたため、「トーマス・フェルミ理論?」「ホーエンベルグ・コーン定理?」と頭の中が混乱しているかもしれませんが、ここからいよいよコーン・シャム方程式が登場します。

Kohn-Sham2

ホーエンベルグ・コーン定理によりトーマス・フェルミ理論の正しさが立証されましたが、実際の電子状態の計算はまだ出来ませんでした。この定理に基づく計算法は、翌年1965年に発表されたコーン・シャム方程式を用いることによりやっと可能になりました。

コーン・シャム方程式では、運動エネルギーの計算に電子密度の汎関数ではなく、ハートリーフォック法と同様の独立近似の定式を利用しています。このことにより化学・固体物性の定量的な計算が可能となり、DFTの急速な拡大につながりました。

しかし、このことにより、トーマス・フェルミ理論で当初提唱された純粋なDFTと現在使われているDFT計算はイコールではなくなりました。つまり、多くの人が知らないでいるのですが、「DFT理論=コーン・シャム方程式」は厳密には違います。

ここまでを簡単にまとめると、

「1927年にDFT理論が提唱される→実用性なし→1964年にホーエンベルグ・コーン定理により証明される→1965年にコーン・シャム方程式が発表され実際の系に使えるようになった」

です。

ざっと1930年から1980年まで説明しましたが、長くなりましたので、続きは次回の記事で書きたいと思います。

 

参考図書

 

The following two tabs change content below.
ゼロ

ゼロ

女の子。研究所勤務。趣味は読書とハイキング ♪ ハンドルネームは村上龍の「愛と幻想のファシズム」の登場人物にちなんでま〜す。5 分後の世界、ヒュウガ・ウイルスも好き!

関連記事

  1. クロスカップリング用Pd触媒 小ネタあれこれ
  2. 有機反応を俯瞰する ー[1,2] 転位
  3. 「機能性3Dソフトマテリアルの創出」ーライプニッツ研究所・Möl…
  4. トリプトファン選択的なタンパク質修飾反応の開発
  5. 生体深部イメージングに有効な近赤外発光分子の開発
  6. 文具に凝るといふことを化学者もしてみむとてするなり⑤:ショットノ…
  7. スタチンのふるさとを訪ねて
  8. 酵素の真実!?

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

注目情報

ピックアップ記事

  1. 不斉触媒 ふせいしょくばい asymmetric catalyst
  2. 阪大で2億7千万円超の研究費不正経理が発覚
  3. 化学Webギャラリー@Flickr 【Part2】
  4. スティーブ・ケント Stephen B. H. Kent
  5. 臭いの少ない1,3-プロパンジチオール等価体
  6. 夢・化学-21 化学への招待
  7. 化学と株価
  8. ワイリー・サイエンスカフェ開設記念クイズ・キャンペーン
  9. 2009年ロレアル・ユネスコ女性科学者 日本奨励賞発表
  10. ノーベル医学生理学賞、米の2氏に

注目記事

関連商品

注目情報

試薬検索:東京化成工業



最新記事

「電子の動きを視る」ーマックス・プランク研究所・Krausz研より

「ケムステ海外研究記」の第13回目は、第6回目の志村さんのご紹介で、マックス・プランク量子光学研究所…

岩澤 伸治 Nobuharu Iwasawa

岩澤 伸治 (いわさわ のぶはる、19xx年x月x日-)は、日本の有機化学者である。東京工業大学 教…

NCL用ペプチド合成を簡便化する「MEGAリンカー法」

ワシントン大学・Champak Chatterjeeらは、独自開発した固相担持ユニット「MEGAリン…

有機合成化学協会誌2017年5月号 特集:キラリティ研究の最前線

有機合成化学に関わる方ならばおなじみの有機合成化学協会誌。有機合成化学協会の会員誌であり、様々な有機…

エッセイ「産業ポリマーと藝術ポリマーのあいだ」について

Tshozoです。先日Angewandte Chemie International Edition…

キラルアニオン相関移動-パラジウム触媒系による触媒的不斉1,1-ジアリール化反応

2016年、ユタ大学・Matthew S. Sigmanらは、電子不足末端アルケンのエナンチオ選択的…

Chem-Station Twitter

PAGE TOP