[スポンサーリンク]

スポットライトリサーチ

三核ホウ素触媒の創製からクリーンなアミド合成を実現

[スポンサーリンク]

ホウ素第85回のスポットライトリサーチは、微生物化学研究所(柴崎研究室)・野田秀俊 博士にお願いしました。

野田さんは筆者の同門で、後輩にあたります。学生時代から同じ釜の飯を食っていた関係なのですが、”切れる”意見に富む人物という印象は当時から変わらず持っていました。その後スイスのETH(Jeff Bode研)に留学して博士号を取得。そこで学んだペプチド化学の経験を活かして帰国後に大きな成果を成し遂げ、Nature Chemistryへ論文公開を果たしたことを機に、紹介させていただく運びとなりました。

“Unique Physicochemical and Catalytic Properties Dictated by the B3NO2 Ring System”
Noda, H.; Furutachi, M.; Asada, Y.; Shibasaki, M.; Kumagai, N. Nat. Chem. 2017, doi:10.1038/nchem.2708

共同研究者でもある熊谷直哉 主席研究員は野田さんのことを以下の様に評しておられます。

グループは違いましたが、東大助教時代からまだ修士学生の野田君となぜかよく一緒に朝まで飲んでいて、今また一緒に仕事をしているのもきっと何かの縁なんでしょう。Bode研時代の研究でホウ素に詳しいこともあり、殻に閉じこもっていたDATBを一気に開花させてくれました。彼なしではここまでDATBを裸にすることはできなかったでしょう。彼ほど俗世間から完全乖離して冷徹なまでの分析力を持っている人はなかなかいないでしょう。心配なのは、やせすぎなのともうちょっとふざけたことを口走ってもいいんじゃないかと思うくらいでしょうか。

筆者は二人とも学生時代よりよく知る立場に居ますが、いかにも”らしい”コメントから、昔懐かしい香りを感じてやみません。しかし仕事は一級品だと思いますので、是非今回も皆さんでお楽しみ頂ければと思います。

Q1. 今回のプレス対象となったのはどんな研究ですか?簡単にご説明ください。

アミド結合は様々な医薬品などに見られる重要な化学結合ですが、その合成法は化学量論量の活性化試薬に大きく依存していることから、より環境調和性の高い合成プロセスの開発が求められています。

この課題に対する解決策の一つの可能性として、今回の研究ではカルボン酸とアミンとの脱水縮合反応を触媒的に促進させる新しい分子を提示しました。この触媒はホウ素原子3つを含む6員環構造を特徴としており、我々はDATBと呼んでいます。山本尚先生らが報告している芳香族ボロン酸類をはじめとして、本反応を触媒する分子は今までにも知られていましたが、DATBは既存のものよりも活性が高く、幅広い基質適用範囲を備えていることが判明しました。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

実はDATBは当初想定したターゲット構造ではありませんでした。私の東大時代の後輩である古舘信博士(現 福岡大学薬学部助教)が微化研でのポスドク時代に、カルボン酸のダイレクト型アルドール反応を目指して触媒をデザインしていたのがきっかけです。カルボン酸の酸素原子をダブルに活性化しようと2をデザインしていたのですが、得られたものは安定なDATB骨格を持つ1でした。当初の触媒設計に加えて、先にも記したように芳香族ボロン酸も本アミド化反応を触媒することから、DATBの6員環が開環した化合物が活性種となってカルボン酸を活性化するのではと我々は思い込んでいました。ところが交差実験として2種の触媒を混ぜてアミド化反応を行ったところ、6員環構造は不変であることを示す結果が得られ、そこからDATBに対する理解が深まりました。とは言え、まだまだ理解の至らない部分が多く、反応機構の解明にはもう少し時間がかかりそうです。

 

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

今回の論文は立て続けに3誌にリジェクトされた時点で、論文の導入部をアミド結合の重要性ありきの理解しやすいものから、触媒構造の特異性に焦点を当てた現在の形へと大きく変更することにしました。我々の研究室では珍しいこの判断は今となっては良い選択だったと言えるわけですが、当初は馴染みの薄い分野の論文とにらめっこしながら、連日のように熊谷さんとあーだこーだと議論していました。ホウ素のLewis酸性にこだわって検討を続けていった結果、触媒にピリジンが配位したX線構造と、リン酸アミドが触媒に配位したDFT計算構造が得られたことから、これらを軸としてストーリーを紡ぐことにしました。

 

Q4. 将来は化学とどう関わっていきたいですか?

基本的に移り気なので将来のことはわかりませんが、楽しんで化学を続けられている間は、1) (化学上の)本質的な問題に取組むこと、2) その状況下で最も重要なことが明らかとなる選択肢から取り掛かること、3) 尋ねるべき人を知り、また自分も尋ねられる人になること、を大切にしていきたいです。

 

Q5. 最後に、読者の皆さんにメッセージをお願いします。

留学時代に何度も言われたのが「日本人(アジア人)は手を動かしすぎる」でした。もしアイデアが尽きて、気合と根性と運に頼りたくなったら要注意。実験台から少し離れて、文献を読んだり、隣の人とディスカッションをしたり、散歩に繰り出したりしましょう。遠回りに見えて、より早期の問題解決に繋がることが多いです。研究にとって運も重要なファクターであることは間違いありませんが、何でも一人でできるスーパーマンならいざ知らず、多くの人にとっては再現性のある研究の進め方を身につけるのが大切です。

関連リンク

研究者の略歴

野田 秀俊(のだ ひでとし)

【所属】公益財団法人微生物化学研究会微生物化学研究所 有機合成研究部(柴崎正勝研究室) 日本学術振興会特別研究員PD

【研究テーマ】興味深い化学(物質・反応)を探索し、中身を調べること

【略歴】

2006年3月 東京大学薬学部卒業

2008年3月 東京大学大学院薬学系研究科修士課程修了

2008年4月〜2011年4月 東レ株式会社基礎研究センター医薬研究所

2015年3月 ETH Zurich化学・応用生物学科博士課程修了(Jeffrey Bode研究室)

2015年4月より現職

2017年4月より公益財団法人微生物化学研究会微生物化学研究所研究員に内定

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 一重項励起子開裂を利用した世界初の有機EL素子
  2. 「大津会議」参加体験レポート
  3. 【太陽ホールディングス】新卒採用情報(2027卒)
  4. 複雑なアルカロイド合成
  5. ゼロから始める!量子化学計算~遷移状態を求める~
  6. 分子間相互作用の協同効果を利用した低対称分子集合体の創出
  7. アズレンの蒼い旅路
  8. NMR解析ソフト。まとめてみた。①

注目情報

ピックアップ記事

  1. 化学実験系YouTuber
  2. 炭素繊維は鉄とアルミに勝るか? 番外編 ~NEDOの成果について~
  3. KISTEC教育講座『中間水コンセプトによるバイオ・医療材料開発』 ~水・生体環境下で優れた機能を発揮させるための材料・表面・デバイス設計~
  4. ケムステ版・ノーベル化学賞候補者リスト【2025年版・10/08更新】
  5. Lithium Compounds in Organic Synthesis: From Fundamentals to Applications
  6. 有機合成化学協会誌2018年12月号:シアリダーゼ・Brook転位・末端選択的酸化・キサンテン・ヨウ素反応剤・ニッケル触媒・Edoxaban中間体・逆電子要請型[4+2]環化付加
  7. 伊丹健一郎 Kenichiro Itami
  8. 化学のちからで抗体医薬を武装する
  9. 3つのラジカルを自由自在!アルケンのアリール-アルキル化反応
  10. イミデートラジカルを用いた多置換アミノアルコール合成

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年3月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

四国化成ってどんな会社?

私たち四国化成ホールディングス株式会社は、企業理念「独創力」を掲げ、「有機合成技術」…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP