[スポンサーリンク]

E

求電子的フッ素化剤 Electrophilic Fluorination Reagent

ベンゼン誘導体、カルボニル化合物→ハロゲン化物

概要

フッ素原子は立体的には水素原子と酷似しているが、電気的には全く逆の陰性である。このためフッ素置換によって、構造を大きく変えることなく、電気的チューニングが可能となる。また、C-H結合よりもC-F結合は強く切れにくいため、化合物の安定性を高める設計もできる。例えばラセミ化しやすい水素をフッ素置換すると、キラリティの安定性を増す事が出来る。

この性質ゆえ、フッ素化反応は医薬探索・合成および材料化学といった、分子工学的な分野において重要な役割を担っている。現在でも効率的合成法には乏しく、その潜在的需要は大きい。
近年では不斉触媒を用いて、フッ素原子をエナンチオ選択的に導入する手法も開発されてきている。

 

 

基本文献

  • Umemoto, T.; Kawada, K.; Tomita, K. Tetrahedron Lett. 1989, 27, 4465. doi:10.1016/S0040-4039(00)84980-1
  • Singh, S.; DesMarteau, D. D.; Zuberi, S. S.; Witz, M.; Huang, H. N. J. Am. Chem. Soc. 1987, 109, 7194. DOI: 10.1021/ja00257a051
  • Banks, R. E. et al.  J. Fluorine Chem. 1990, 46, 297.
  • Nyffeler, P. T.; Duron, S. G.; Burkart, M. D.; Vincent, S. P.; Wong, C.-H. Angew. Chem. Int. Ed. 2005, 44 192. doi:10.1002/anie.200400648
  • Kirk, K. L. Org. Process Res. Dev. 200812, 305. doi:10.1021/op700134j

 

反応機構

 

反応例

触媒的不斉フッ素化[1] electrophilic_fluorination_2.gif
ヨードトルエンジフルオリド[2]:近年新しく開発された求電子フッ素化剤。他のフッ素化試薬に比べて毒性が低く、安定で取り扱いが容易。
electrophilic_fluorination_4.gif
エナミンとの反応[3] electrophilic_fluorination_5.gif
アリール金属化合物は求電子フッ素試薬との反応性が低く、単純な方法では上手くフッ素化が行えない。Ritterらは、アリールホウ素・スズ試薬から官能基化芳香族フッ化物を合成できる手法を開発している。[4][5] electrophilic_fluorination_6.gif
electrophilic_fluorination_7.gif

実験手順

 

実験のコツ・テクニック

 

参考文献

[1] Hamashima, Y.; Yagi, K.; Takano, H.; Tamas, L.; Sodeoka, M. J. Am. Chem. Soc. 2002, 124, 14530. DOI: 10.1021/ja028464f

[2] (a) Inagaki, T.; Nakamura, Y.; Sawaguchi, M.; Yoneda, N.; Ayuba, S.; Hara, S. Tetrahedron Lett. 2003, 44, 4117. doi:10.1016/S0040-4039(03)00841-4 (b) Yoshida, M. et al. ARKIVOC 2003, 6,

36.

[3] Peng,W.; Shreeve, J. M. J. Org. Chem. 200570, 5760. DOI: 10.1021/jo0506837

[4] Furuya, T.; Strom, A. E.; Ritter, T. J. Am. Chem. Soc. 2009, 131, 1662. DOI: 10.1021/ja8086664

[5] Furuya, T.; Ritter, T. Org. Lett. 200911, 2860. DOI: 10.1021/ol901113t

 

関連反応

 

関連書籍

 

外部リンク

The following two tabs change content below.
Hiro

Hiro

Hiro

最新記事 by Hiro (全て見る)

関連記事

  1. フォン・ペックマン反応 von Pechmann Reactio…
  2. クライゼン縮合 Claisen Condensation
  3. ヒドロメタル化 Hydrometalation
  4. ホフマン脱離 Hofmann Elimination
  5. コールマン試薬 Collman’s Reagent
  6. チロシン選択的タンパク質修飾反応 Tyr-Selective P…
  7. デレピン アミン合成 Delepine Amine Synthe…
  8. トロスト不斉アリル位アルキル化反応 Trost Asymmetr…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 2011年ロレアル・ユネスコ女性科学者 日本奨励賞発表
  2. マッチ博物館
  3. 堂々たる夢 世界に日本人を認めさせた化学者・高峰譲吉の生涯
  4. 有機合成化学者が不要になる日
  5. 東京大学理学部 化学教室
  6. 対決!フタロシアニンvsポルフィリン
  7. 112番元素にコペルニクスに因んだ名前を提案
  8. アミロイド線維を触媒に応用する
  9. 化学研究ライフハック: Evernoteで論文PDFを一元管理!
  10. カティヴァ 酢酸合成プロセス Cativa Process for Acetic Acid Synthesis

関連商品

注目情報

注目情報

最新記事

投票!2018年ノーベル化学賞は誰の手に!?

今年も9月終盤にさしかかり、毎年恒例のノーベル賞シーズンがやって参りました!化学賞は日本時間…

ライトケミカル工業株式会社ってどんな会社?

ライトケミカル工業は自社製品を持たず、研究開発もしない、更に営業マンもいない独立資本の受託専門会社(…

クラリベイト・アナリティクスが「引用栄誉賞2018」を発表

9月20日、クラリベイト・アナリティクス社から2018年の引用栄誉賞が発表されました。本賞は…

AIで世界最高精度のNMR化学シフト予測を達成

理化学研究所(理研)環境資源科学研究センター環境代謝分析研究チームの菊地淳チームリーダー、伊藤研悟特…

イミニウム励起触媒系による炭素ラジカルの不斉1,4-付加

2017年、カタルーニャ化学研究所・Paolo Melchiorreらは、イミニウム有機触媒系を可視…

ケムステ版・ノーベル化学賞候補者リスト【2018年版】

各媒体からかき集めた情報を元に、「未来にノーベル化学賞の受賞確率がある化学者」をリストアップしていま…

PAGE TOP