[スポンサーリンク]

E

求電子的フッ素化剤 Electrophilic Fluorination Reagent

[スポンサーリンク]

ベンゼン誘導体、カルボニル化合物→ハロゲン化物

概要

フッ素原子は立体的には水素原子と酷似しているが、電気的には全く逆の陰性である。このためフッ素置換によって、構造を大きく変えることなく、電気的チューニングが可能となる。また、C-H結合よりもC-F結合は強く切れにくいため、化合物の安定性を高める設計もできる。例えばラセミ化しやすい水素をフッ素置換すると、キラリティの安定性を増す事が出来る。

この性質ゆえ、フッ素化反応は医薬探索・合成および材料化学といった、分子工学的な分野において重要な役割を担っている。現在でも効率的合成法には乏しく、その潜在的需要は大きい。
近年では不斉触媒を用いて、フッ素原子をエナンチオ選択的に導入する手法も開発されてきている。

 

 

基本文献

  • Umemoto, T.; Kawada, K.; Tomita, K. Tetrahedron Lett. 1989, 27, 4465. doi:10.1016/S0040-4039(00)84980-1
  • Singh, S.; DesMarteau, D. D.; Zuberi, S. S.; Witz, M.; Huang, H. N. J. Am. Chem. Soc. 1987, 109, 7194. DOI: 10.1021/ja00257a051
  • Banks, R. E. et al.  J. Fluorine Chem. 1990, 46, 297.
  • Nyffeler, P. T.; Duron, S. G.; Burkart, M. D.; Vincent, S. P.; Wong, C.-H. Angew. Chem. Int. Ed. 2005, 44 192. doi:10.1002/anie.200400648
  • Kirk, K. L. Org. Process Res. Dev. 200812, 305. doi:10.1021/op700134j

 

反応機構

 

反応例

触媒的不斉フッ素化[1] electrophilic_fluorination_2.gif
ヨードトルエンジフルオリド[2]:近年新しく開発された求電子フッ素化剤。他のフッ素化試薬に比べて毒性が低く、安定で取り扱いが容易。
electrophilic_fluorination_4.gif
エナミンとの反応[3] electrophilic_fluorination_5.gif
アリール金属化合物は求電子フッ素試薬との反応性が低く、単純な方法では上手くフッ素化が行えない。Ritterらは、アリールホウ素・スズ試薬から官能基化芳香族フッ化物を合成できる手法を開発している。[4][5] electrophilic_fluorination_6.gif
electrophilic_fluorination_7.gif

実験手順

 

実験のコツ・テクニック

 

参考文献

[1] Hamashima, Y.; Yagi, K.; Takano, H.; Tamas, L.; Sodeoka, M. J. Am. Chem. Soc. 2002, 124, 14530. DOI: 10.1021/ja028464f

[2] (a) Inagaki, T.; Nakamura, Y.; Sawaguchi, M.; Yoneda, N.; Ayuba, S.; Hara, S. Tetrahedron Lett. 2003, 44, 4117. doi:10.1016/S0040-4039(03)00841-4 (b) Yoshida, M. et al. ARKIVOC 2003, 6,

36.

[3] Peng,W.; Shreeve, J. M. J. Org. Chem. 200570, 5760. DOI: 10.1021/jo0506837

[4] Furuya, T.; Strom, A. E.; Ritter, T. J. Am. Chem. Soc. 2009, 131, 1662. DOI: 10.1021/ja8086664

[5] Furuya, T.; Ritter, T. Org. Lett. 200911, 2860. DOI: 10.1021/ol901113t

 

関連反応

 

関連書籍

 

外部リンク

関連記事

  1. 生体共役反応 Bioconjugation
  2. クラベ アレン合成 Crabbe Allene Synthesi…
  3. グロブ開裂 Grob Fragmentation
  4. 金属カルベノイドを用いるシクロプロパン化 Cyclopropan…
  5. ジオキシラン酸化 Oxidation with Dioxiran…
  6. 歪み促進型アジド-アルキン付加環化 SPAAC Reaction…
  7. ボールマン・ラーツ ピリジン合成 Bohlmann-Rahtz …
  8. クメン法 Cumene Process

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. Small Molecule Medicinal Chemistry -Strategies and Technologies-
  2. 若手研究者に朗報!? Reaxys Prizeに応募しよう
  3. 白い器を覆っている透明なガラスってなんだ?
  4. 交差アルドール反応 Cross Aldol Reaction
  5. 有機光触媒を用いたポリマー合成
  6. メルマガ有機化学 (by 有機化学美術館) 刊行中!!
  7. 1つの蛍光分子から4色の発光マイクロ球体をつくる
  8. 4,4,5,5-テトラメチル-1,3,2-ジオキサホスホラン2-オキシド : 4,4,5,5-Tetramethyl-1,3,2-dioxaphospholane 2-Oxide
  9. 触媒的プロリン酸化を起点とするペプチドの誘導体化
  10. Newton別冊「注目のスーパーマテリアル」が熱い!

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

第133回―「遺伝暗号リプログラミングと翻訳後修飾の研究」Jason Chin教授

第133回の海外化学者インタビューはジェイソン・チン教授です。ケンブリッジMRC分子生物学研究所のタ…

アメリカ大学院留学:卒業後の進路とインダストリー就活(3)

前回・前々回の記事では、アメリカのPhD取得後の進路について、一般的な進路やインダストリー就活の流れ…

リンだ!リンだ!ホスフィン触媒を用いたメチルアミノ化だ!

有機リン触媒とアリールボロン酸を用いたニトロメタンの還元的C–Nカップリング反応が報告された。本手法…

化学者のためのエレクトロニクス講座~次世代の通信技術編~

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLE…

第132回―「遷移金属触媒における超分子的アプローチ」Joost Reek教授

第132回の海外化学者インタビューはジュースト・リーク教授です。アムステルダム大学ファント・ホッフ分…

位置多様性・脱水素型クロスカップリング

第281回のスポットライトリサーチは、菅原真純 博士にお願いしました。菅原さんは理化学研究所…

エノールエーテルからα-三級ジアルキルエーテルをつくる

α-オキシラジカルを経るエノールエーテルのa位官能基化が開発された。種々のアルキルエノールエーテルと…

アメリカ大学院留学:卒業後の進路とインダストリー就活(2)

前回の記事では、アメリカのPhD取得後の進路について、一般的な進路や就活を始める時期について紹介しま…

Chem-Station Twitter

PAGE TOP