[スポンサーリンク]

E

求電子的フッ素化剤 Electrophilic Fluorination Reagent

ベンゼン誘導体、カルボニル化合物→ハロゲン化物

概要

フッ素原子は立体的には水素原子と酷似しているが、電気的には全く逆の陰性である。このためフッ素置換によって、構造を大きく変えることなく、電気的チューニングが可能となる。また、C-H結合よりもC-F結合は強く切れにくいため、化合物の安定性を高める設計もできる。例えばラセミ化しやすい水素をフッ素置換すると、キラリティの安定性を増す事が出来る。

この性質ゆえ、フッ素化反応は医薬探索・合成および材料化学といった、分子工学的な分野において重要な役割を担っている。現在でも効率的合成法には乏しく、その潜在的需要は大きい。
近年では不斉触媒を用いて、フッ素原子をエナンチオ選択的に導入する手法も開発されてきている。

 

 

基本文献

  • Umemoto, T.; Kawada, K.; Tomita, K. Tetrahedron Lett. 1989, 27, 4465. doi:10.1016/S0040-4039(00)84980-1
  • Singh, S.; DesMarteau, D. D.; Zuberi, S. S.; Witz, M.; Huang, H. N. J. Am. Chem. Soc. 1987, 109, 7194. DOI: 10.1021/ja00257a051
  • Banks, R. E. et al.  J. Fluorine Chem. 1990, 46, 297.
  • Nyffeler, P. T.; Duron, S. G.; Burkart, M. D.; Vincent, S. P.; Wong, C.-H. Angew. Chem. Int. Ed. 2005, 44 192. doi:10.1002/anie.200400648
  • Kirk, K. L. Org. Process Res. Dev. 200812, 305. doi:10.1021/op700134j

 

反応機構

 

反応例

触媒的不斉フッ素化[1] electrophilic_fluorination_2.gif
ヨードトルエンジフルオリド[2]:近年新しく開発された求電子フッ素化剤。他のフッ素化試薬に比べて毒性が低く、安定で取り扱いが容易。
electrophilic_fluorination_4.gif
エナミンとの反応[3] electrophilic_fluorination_5.gif
アリール金属化合物は求電子フッ素試薬との反応性が低く、単純な方法では上手くフッ素化が行えない。Ritterらは、アリールホウ素・スズ試薬から官能基化芳香族フッ化物を合成できる手法を開発している。[4][5] electrophilic_fluorination_6.gif
electrophilic_fluorination_7.gif

実験手順

 

実験のコツ・テクニック

 

参考文献

[1] Hamashima, Y.; Yagi, K.; Takano, H.; Tamas, L.; Sodeoka, M. J. Am. Chem. Soc. 2002, 124, 14530. DOI: 10.1021/ja028464f

[2] (a) Inagaki, T.; Nakamura, Y.; Sawaguchi, M.; Yoneda, N.; Ayuba, S.; Hara, S. Tetrahedron Lett. 2003, 44, 4117. doi:10.1016/S0040-4039(03)00841-4 (b) Yoshida, M. et al. ARKIVOC 2003, 6,

36.

[3] Peng,W.; Shreeve, J. M. J. Org. Chem. 200570, 5760. DOI: 10.1021/jo0506837

[4] Furuya, T.; Strom, A. E.; Ritter, T. J. Am. Chem. Soc. 2009, 131, 1662. DOI: 10.1021/ja8086664

[5] Furuya, T.; Ritter, T. Org. Lett. 200911, 2860. DOI: 10.1021/ol901113t

 

関連反応

 

関連書籍

 

外部リンク

The following two tabs change content below.
Hiro

Hiro

Hiro

最新記事 by Hiro (全て見る)

関連記事

  1. スルホニル保護基 Sulfonyl Protective Gro…
  2. フリーデル・クラフツ アシル化 Friedel-Crafts A…
  3. パール・クノール ピロール合成 Paal-Knorr Pyrro…
  4. マイヤース 不斉アルキル化 Myers Asymmetric A…
  5. 求核的フルオロアルキル化 Nucleophilic Fluoro…
  6. ドウド・ベックウィズ環拡大反応 Dowd-Beckwith Ri…
  7. フェリエ転位 Ferrier Rearrangement
  8. 隣接基関与 Neighboring Group Particip…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ブヘラ・ベルクス反応 Bucherer-Bergs reaction
  2. 金属キラル中心をもつ可視光レドックス不斉触媒
  3. ベックマン転位 Beckmann Rearrangement
  4. (+)-マンザミンAの全合成
  5. 核酸塩基は4つだけではない
  6. ここまで来たか、科学技術
  7. 分子の動きを電子顕微鏡で観察
  8. 可視光レドックス触媒を用いた芳香環へのC-Hアミノ化反応
  9. 化学研究ライフハック:情報収集の機会損失を減らす「Read It Later」
  10. 磁力で生体触媒反応を制御する

関連商品

注目情報

注目情報

最新記事

2018年3月2日:ケムステ主催「化学系学生対象 企業合同説明会」

2月も後半となり、3月1日の就活解禁に向けて、2019年卒業予定の学生のみなさんは、就活モードが本格…

高専シンポジウム in KOBE に参加しました –その 2: 牛の尿で発電!? 卵殻膜を用いた燃料電池–

1 月 27 日に開催された第 23 回 高専シンポジウム in KOBE の参加報告の後編です。前…

化学探偵Mr.キュリー7

昨年3月からついに職業作家となった、化学小説家喜多喜久氏。その代表作である「化学探偵Mr.キュリー」…

き裂を高速で修復する自己治癒材料

第139回目のスポットライトリサーチは、物質・材料研究機構(NIMS) 構造材料研究拠点 長田 俊郎…

新コース開講! 東大発の無料オンライン英語講座!

研究室でのプレゼン、国際学会、海外留学など、国際化する研究環境にいまや英語は欠かせません。Engli…

脱水素型クロスカップリング重合法の開発

第138回目のスポットライトリサーチは、筑波大学 神原・桑原研究室の青木 英晃さん(博士前期課程2年…

Chem-Station Twitter

PAGE TOP