[スポンサーリンク]

一般的な話題

有機アジド(1):歴史と基本的な性質

[スポンサーリンク]

早稲田大学に異動してから、前期に上級有機化学Aという4年生から大学院生向けの講義(全5回)を教えています。5回しかないので、毎年有機化学に関する異なるテーマを教えることとしました。自分が同じ講義資料を使わないよう、今回その講義の内容を数回に分けて、公開します。

さて、今年のテーマは有機アジド。アルケンやアルキン、ケトン、ハロゲン化アルキルなど代表的な官能基を大学では習ってきました。一方で有用な官能基はまだまだたくさんあります。その一つがアジド基であり、その有機物が有機アジド(有機アジ化物)。本シリーズでは有機アジドについて、構造と反応性そして用途まで紹介していきたいと思います。

有機アジドとは?

有機アジド(Organic Azides)とは窒素原子が”直線上”に3つ並んだアジド基をもつ有機化合物の総称です(図1)。RN3という一般式で表すことができます。

2016-09-22_16-47-46

有機アジドは1864年に初めて合成され、およそ150年の歴史をもちます。一般的な特徴は以下の2つ。

  • 共鳴構造を描くことができ、”安定”に存在
  • 「求核性」と「求電子性」の2つの性質をもつ

様々な官能基に変換可能であり、近年化学からの生物学的研究へのアプローチに大活躍している分子群です。

実際、SciFinderで「有機アジド」に関する論文数を調べてみると(図2)、軒並み関連論文が増えてきているのがわかります。

2016-09-22_16-51-45

図2 「有機アジド」に関連する論文数(SciFinder調べ)[1]

では、そんな最近注目されている有機アジドははるか昔どのように生まれ、どのように使われてきたのでしょうか。みていきましょう。

 

有機アジドの黎明期

1864年、ドイツの化学者ペーター・グリース(ジアゾ化合物の発見者)によってフェニルアジドが合成されました[2]。しかし、当時は構造が明らかとなっておらず、1-phenyl-1H-triazine構造だと考えられていました(図3)。現在では誤りであることはわかりますね。

2016-09-22_16-58-09

図3. フェニルアジドの合成者と当時の推定構造

その後、1890年に同じくドイツの化学者テーオドール・クルチウスによって、アシルアジドの転位反応が発見されます。生成したイソシアネートは、 水により加水分解を受け、一炭素減炭されたアミンが得られます(図4)。これが、大学の有機化学で習うクルチウス転位ですね[3]

2016-09-22_17-04-19

図4. クルチウスとクルチウス転位

つまり、有機アジドの合成と利用は19世紀が黎明期となります。その後しばらくあまり大きな動きはありませんでしたが、1950年代から60年代に書けて、多くの有機アジドが合成されています。2000年ごろから現在にかけてはアジド核酸生体共役反応の中心分子として有機化学の枠を超えて、活躍するようになりました。では続いて、有機アジドの構造的な性質をみてみましょう。

 

有機アジドの構造:本当に直線か?

冒頭で、有機アジドの構造は”直線”と述べましたが、本当に3つの窒素が等間隔にまっすぐ並んでいるのでしょうか。

答えからいうと完全に真っ直ぐではなく等間隔でもありません。

メチルアジド(CH3-N3)の構造をみてみると(図5)、3つの窒素N1-N2-N3の二面角は172.5°と180°(直線)でないことがわかります。また、結合の長さも、N1-N21.244Åであるのに対して、N2-は1.162ÅとCに近い結合の方が少し長くなっています。

2016-09-22_17-17-26

図5 メチルアジドの構造[4]

もうひとつ、芳香族アジドをみてみましょう(図7)。アジドとニトロ基がベンゼン環のすべての位置に置換している、発狂しそうなぐらい恐ろしげな分子ですが、このX線結晶構造解析[5]をみてみても、直線でなくちょっぴり傾いていることがわかります。

2016-09-22_17-30-06

図6. 有機アジド化合物の例:X線結晶構造解析

 

有機アジドの物性:共鳴・スペクトル・反応性

さて、冒頭に有機アジドは”安定”な分子とも書きましたが、安定といっても「化学的に安定に存在する」ということです。次のような共鳴構造を描くことができ、”安定”に存在できます(図7)。特に芳香族アジドは芳香族との共鳴安定化もあるため”安定”です。

2016-09-22_17-35-49

図7. 共鳴構造がかける

しかしながら、実は「爆発性」という恐ろしい性質を持っています。これに関しては後ほど述べたいと思います。

赤外吸収スペクトルとUVは次のとおり。

IR = 2114 cm-1 (フェニルアジド)

UV = 287 nM, 216 nM (アルキルアジド)

反応性は比較的高く、分子内に求核性のある窒素と求電子性のある窒素をもっています。その結果、1,3-双極子反応ナイトレン等価体として働くことができます。

2016-09-22_17-38-50

図8. アジドの反応性(出典:文献[5])

 さて、第一回目は有機アジドの歴史と基本的な物性をみてみました。次回は最も気になる物性である爆発性に迫ってみたいと思います。

参考文献

  1. Intrieri, D.; Zardi, P.; Caselli, A.; Gallo, E. Chem Commun 2014, 50, 11440. DOI: 10.1039/C4CC03016H
  2. (a) Grieβ, P.; Philos. Trans. R. Soc. London 1864, 13, 377 (b) Grieβ, P. Justus Liebigs Ann. Chem. 1865, 135, 131.
  3. (a) Curtius, T. Ber. Dtsch. Chem. Ges. 1890, 23, 3023 (b) Curtius, T. J. Prakt. Chem. 1894, 50, 275.
  4. Nguyen, M. T.; Sengupta, D.; Ha, T.-K.J. Phys. Chem. 1996, 100, 6499. DOI: 10.1021/jp953022u
  5. Chiba, S.Synlett 2011, 2012, 21. DOI: 10.1055/s-0031-1290108

上級有機化学シリーズー有機アジド

関連書籍

The following two tabs change content below.
webmaster
Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. 化学を広く伝えるためにー多分野融合の可能性ー
  2. 「大津会議」参加体験レポート
  3. ケトンを配向基として用いるsp3 C-Hフッ素化反応
  4. 第37回反応と合成の進歩シンポジウムに参加してきました。
  5. チオール架橋法による位置選択的三環性ペプチド合成
  6. 文具に凝るといふことを化学者もしてみむとてするなり⑫:「コクヨの…
  7. どっちをつかう?:adequateとappropriate
  8. 未来の科学者を育てる政策~スーパーサイエンスハイスクール(SSH…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 第95回日本化学会付設展示会ケムステキャンペーン!Part I
  2. 食品アクリルアミド低減を 国連専門委「有害の恐れ」
  3. レビュー多くてもよくね?
  4. 粉いらずの指紋検出技術、米研究所が開発
  5. シェリル・サイ Shiou-Chuan (Sheryl) Tsai
  6. 1,2,3,4-シクロブタンテトラカルボン酸二無水物:1,2,3,4-Cyclobutanetetracarboxylic Dianhydride
  7. 研究室で役立つ有機実験のナビゲーター―実験ノートのとり方からクロマトグラフィーまで
  8. 1回飲むだけのインフル新薬、5月発売へ 塩野義製薬
  9. ストーク エナミン Stork Enamine
  10. 結晶スポンジ法から始まったミヤコシンの立体化学問題は意外な結末

関連商品

注目情報

注目情報

最新記事

リチウム金属電池の寿命を短くしている原因を研究者が突き止める

リチウムリオンバッテリー(リチウムイオン二次電池)はPCやスマートフォンなどの電子機器に利用されてい…

研究室でDIY!~エバポ用真空制御装置をつくろう~ ③

さて、前回に引き続いて、「エバポ用真空制御装置の自作」に挑戦しています。前回までの記事では、…

AIによる創薬に新たな可能性 その研究と最新技術に迫る ~米・Insitro社 / 英・ケンブリッジ大学の研究から~

AIの機械学習による創薬が化学業界で注目を集めています。2019年3月に米国サンフランシスコで開催さ…

特長のある豊富な設備:ライトケミカル工業

1. 高粘度撹拌、高温・高圧・高真空に対応可能な反応釜高粘度でも撹拌できる大容量攪拌機と効率用除…

ライトケミカル工業2021年採用情報

当社の技術グループは、20代~30代の若手社員が重要な主要案件を担当しています。広範囲で高レベルな化…

中高生・高専生でも研究が学べる!サイエンスメンタープログラム

研究室に入って本格的な研究を始めるのは、大学4年生からが一般的。でも最近は、中高生が研究に取り組める…

Chem-Station Twitter

PAGE TOP