[スポンサーリンク]

スポットライトリサーチ

電池材料粒子内部の高精細な可視化に成功~測定とデータ科学の連携~

[スポンサーリンク]

第343回のスポットライトリサーチは、東北大学大学院工学研究科髙橋幸生研究室)・修士2年の上松 英司さんにお願いしました。

電池材料などとして使われる先端材料の複雑・不均一な内部構造は未だ不明な点が多くあります。今回の研究では多次元イメージング計測とデータ科学の連携によって電池材料粒子内部の高精細な可視化に成功しました。本成果はThe Journal of Physical Chemistry Letters誌 原著論文およびプレスリリースに公開されています。

“Visualization of Structural Heterogeneities in Particles of Lithium NickelManganese Oxide Cathode Materials by Ptychographic X-ray Absorption Fine Structure” Hideshi Uematsu, Nozomu Ishiguro,* Masaki Abe, Shuntaro Takazawa, Jungmin Kang, Eiji Hosono, Nguyen Duong Nguyen, Hieu Chi Dam, Masashi Okubo, and Yukio Takahashi, J. Phys. Chem. Lett. 2021, 12, 5781−5788. DOI: 10.1021/acs.jpclett.1c01445

研究を指導された髙橋幸生 教授石黒志 助教から、上松さんについて以下のコメントを頂いています。それでは今回もインタビューをお楽しみください!

髙橋教授コメント

上松君は、研究室配属から1年半の間に驚くほど成長し、放射光計測・解析に関する多くのスキルを身に付けました。自身の研究テーマに真摯に取り組み、粘り強くデータ解析した結果が今回の成果に結びついたと思っています。今後、多くの経験と自信を獲得しながら、さらなる成長を重ね、我が国の学術研究(出来れば、放射光分野)の将来を担う人材になることを期待しています。

石黒助教コメント

上松君は、COVID-19の難しい状況下になってすぐに当研究室に配属したので、始めは、制限された環境下で知識・技術の習得は苦労するかもしれないと思ったのですが、もともとの意識と好奇心が高く、同期の学生とともにすぐに乗り越えてきてくれました。現在では試料の取り扱いから、実験機器の設計、計測実験、プログラミング・解析まで色々な作業に積極的に取り組んでいます。また、ディスカッションでも1アドバイスしたら、自分でその詳細を調べて、私が想定した以上のものを提供してくれるが、頼もしく感じます。今後も知識・技術を吸収しつつ、新しい価値観を創出できる人材になる事を期待しています。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

「電池材料の中身がどうなっているのか?」を放射光X線により可視化する研究です。現在、電池材料のさらなる高機能化を目指して、電子顕微鏡などでの試料表面の観察・分析が広く行われ、どのような組成、構造、粒子の形状などが、どう性能と関連しているのか議論されています。しかしながら電子顕微鏡では試料粒子・薄膜を原子スケールで観察・分析可能な一方で、試料表面や極めて薄く加工した試料しか見ることができません。電池材料の内部構造について観察可能な手法が少なく、性能との関連は未知な領域が多く存在します。そのため試料内部構造と性能との関連を試料内部の深くまで高解像度で可視化可能な手法が求められています。

放射光X線計測は、電子顕微に比べより厚い試料の内部まで観察可能かつ試料へのダメージが比較的小さいことが強みです。私たちが研究を行っているタイコグラフィ−XAFS(X-ray Absorption Fine Structure : X線微細吸収構造)法は、大型放射光施設SPring-8などで得られる輝度の高いX線を用いる顕微化学状態イメージング手法です。この手法により、電子顕微鏡には及ばないものの数十 nmの空間分解能で分厚い試料内部までの化学状態分布と微細構造を明らかにすることが可能となっています。さらにはタイコグラフィ–XAFS計測データを解析していくと、数万ピクセル×(化学状態パラメータ数)ものいわゆるビッグデータが取得できます。この膨大なデータの中から知識を抽出するために、機械学習やデータマイニングといった高度情報処理技術を駆使する必要があると考えられます

本研究では、スピネル型ニッケルマンガン酸リチウム(LNMO)というリチウムイオン電池正極材料をターゲットとして、タイコグラフィ−XAFS計測を行い、計測結果から化学状態パラメータ分布を抽出しました。そしてデータマイニング手法を用いて相構造に由来する化学状態パラメータ間の相関性をグループ分けすることで、粒子内部の複雑な不均一構造を可視化することに成功しました。本研究での成果は、電池材料に限らず触媒や磁性材料など幅広い先端材料のナノ機能分析への応用が期待されます。また現在、東北大学青葉山新キャンパス内に従来よりも高輝度な光源が利用可能となる次世代型放射光施設が建設中であり2024年度より運用開始予定です。この優れた光源の登場によりタイコグラフィ−XAFS計測のさらなる高分解能化や計測時間の短縮化が見込まれ、様々な試料の多様な条件での観察により先端材料の設計・開発が促進されることが期待されます。

図 タイコグラフィ−XAFS計測の模式図(右)とデータマイニングによる化学状パラメータからの相情報の抽出(左)。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

特に思い入れがあるのは、大型放射光施設SPring-8での計測です。施設を使用できるのは1度に1週間ほどであり、限りある時間の中で解析に耐えうるデータの計測に苦労しました。計測では、先生方を含めた当研究室のメンバー全員で装置のセットアップから計測まで行い、最高のデータを取れるように最適なセットアップを全員でひたすら模索したのは思い出深いです。また一回8時間前後の長時間の計測が問題なく実行されているか日夜を通し監視する必要があったため、体力的にも精神的にも大変でした。そのためこの実験の結果が論文になってとても嬉しいです。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

正直にいうと計測から出てきたデータの解析まで全て難しく大変でした。計測について前述したので解析について書くと、100枚以上の試料像と化学状態パラメータマップや散布図を睨み、それら1枚1枚に問題がないか、そしてどのような関連性が潜んでいるかを探すのがとても難しかったです。

タイコグラフィ−XAFS法では、試料を透過したX線の回折強度パターンから位相回復計算という反復計算を用いて試料像を再構成し、これをX線エネルギー毎に取得しスタックすることで試料像のピクセル毎にXAFSスペクトルを取得します。その再構成像が歪んでいないかズレが生じていないか、エネルギー毎に確認し、パラメータを変えたり、場合によっては補正を行うコードを組み込んだりと試行錯誤しました。

データ間の関連性に関して、膨大なデータの中から探し出し定量的に評価するのは人間の目ではやはり難しいです。そこでデータマイニング的手法を検討し適用することで乗り越えました。

様々な難しいところがありましたが、当研究室の高橋先生、石黒先生、姜先生、早稲田大の大久保先生、産総研の細野先生、北陸先端大のDam先生、Nguyen先生の多大な協力により乗り越えることができました。上記の先生の他にも、同期には解析のコードを共有したり、話をして自分の考えがまとまったりと非常に助けられました。

Q4. 将来は化学とどう関わっていきたいですか?

計測技術は、生体化学、材料科学、半導体など多くの分野を支える基盤となる技術です。化学に特定せず広い分野の発展の礎となる研究をしていきたいです。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

私の研究は多くの先生、仲間に支えられてこのような成果となりました。新しい仲間がさらに増えるととても嬉しいです。私が所属する研究室は放射光計測を主にテーマとしており、材料分析から計測治具の設計、光学系シミュレーション・実証、プログラミングに至るまで広く扱っています。学部生・大学院生の方で興味が湧いたなら、ぜひ高橋(幸)研究室においでください。

最後に、自身の研究を広く伝えるこのような機会を与えていただいたChem-Stationスタッフの皆様に深く感謝を申し上げます。

研究者の略歴

名前:上松 英司
所属:東北大学大学院工学研究科金属フロンティア工学専攻 髙橋(幸)研究室
研究テーマ:タイコグラフィ−XAFS法による蓄電固体材料の化学状態可視化
略歴:
2018年3月 国立豊田工業高等専門学校機械工学科 卒業
2020年3月 東北大学工学部材料化学総合学科 卒業
2020年4月―現在 東北大学大学院工学研究科金属フロンティア工学専攻 博士前期課程 在学

関連リンク

  1. 東北大学 国際放射光イノベーション・スマート研究センター・東北大学 多元物質科学研究所 髙橋幸生研究室
  2. プレスリリース: 電池材料粒子内部の高精細な可視化に成功 ~多次元イメージング計測とデータ科学の連携~
  3. 東北大学 国際放射光イノベーション・スマート研究センター

hoda

投稿者の記事一覧

学部生です。機械学習を勉強しています。

関連記事

  1. ケムステ主催バーチャルシンポジウム「最先端有機化学」を開催します…
  2. C&EN コラム記事 ~Bench & Cu…
  3. シュプリンガー・ネイチャーより 化学会・薬学会年会が中止になりガ…
  4. ゴードン会議に参加して:ボストン周辺滞在記 Part II
  5. 架橋シラ-N-ヘテロ環合成の新手法
  6. 3級C-H結合選択的な触媒的不斉カルベン挿入反応
  7. 光触媒ラジカル付加を鍵とするスポンギアンジテルペン型天然物の全合…
  8. 第95回日本化学会付設展示会ケムステキャンペーン!Part II…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 第97回日本化学会春季年会 付設展示会ケムステキャンペーン Part II
  2. 親子で楽しめる化学映像集 その1
  3. スタンリー・ウィッティンガム M. S. Whittingham
  4. 「日産化学」ってどんな会社?
  5. 有機化学者のラブコメ&ミステリー!?:「ラブ・ケミストリー」
  6. テトラキス[3,5-ビス(トリフルオロメチル)フェニル]ほう酸ナトリウム水和物 : Sodium Tetrakis[3,5-bis(trifluoromethyl)phenyl]borate Hydrate
  7. ヤコブセン転位 Jacobsen Rearrangement
  8. 穴の空いた液体
  9. 第119回―「腸内細菌叢の研究と化学プロテオミクス」Aaron Wright博士
  10. スズアセタールを用いる選択的変換 Selective Transformation with Tin Acetal

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年10月
« 9月   11月 »
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

注目情報

最新記事

腎細胞がん治療の新薬ベルツチファン製造プロセスの開発

2021年夏に米国 FDA はベルツチファン (belzutifan, WeliregTM) という…

マテリアルズ・インフォマティクスの基本とMI推進

見逃し配信視聴申込はこちら■概要2021年9月7日に開催されたウェブセミナー「マテリアル…

【四国化成工業】新卒採用情報(2023卒)

◆求める人財像:『使命感にあふれ、自ら考え挑戦する人財』私たちが社員に求めるのは、「独創力」…

四国化成工業ってどんな会社?

私たち四国化成工業株式会社は、企業理念「独創力」のもと「有機合成技術」を武器に「これまでになかった材…

ポンコツ博士の海外奮闘録 外伝② 〜J-1 VISA取得編〜

ポンコツシリーズ番外編 その2 J-1 VISA取得までの余談と最近日本で問題になった事件を経験した…

結合をアリーヴェデルチ! Agarozizanol Bの全合成

セスキテルペンAgarozizanol Bの全合成が初めて達成された。光照射下で進行するカスケード反…

有機合成化学協会誌2022年1月号:無保護ケチミン・高周期典型金属・フラビン触媒・機能性ペプチド・人工核酸・脂質様材料

有機合成化学協会が発行する有機合成化学協会誌、2022年1月号がオンライン公開されました。本…

第167回―「バイオ原料の活用を目指した重合法の開発」John Spevacek博士

第167回の海外化学者インタビューは、ジョン・スペヴァセック博士です。Aspen Research社…

繊維強化プラスチックの耐衝撃性を凌ぐゴム材料を開発

名古屋大学大学院工学研究科有機・高分子化学専攻の 野呂 篤史講師らの研究グループは、日本ゼオンと共同…

反応化学の活躍できる場を広げたい!【ケムステ×Hey!Labo 糖化学ノックインインタビュー②】

2021年度科学研究費助成事業 学術変革領域研究(B)に採択された『糖鎖ケミカルノックインが拓く膜動…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP