[スポンサーリンク]

化学者のつぶやき

Dead Endを回避せよ!「全合成・極限からの一手」⑦(解答編)

[スポンサーリンク]

このコーナーでは、直面した困難を克服するべく編み出された、全合成における優れた問題解決とその発想をクイズ形式で紹介してみたいと思います。

第7回は林・石川らによるタミフルの全合成が題材でした(問題はこちら)。今回はその解答編になります。

High-Yielding Synthesis of the Anti-Influenza Neuramidase Inhibitor (-)-Oseltamivir by Three One-Pot Operations
Ishikawa, H.; Suzuki, T.; Hayashi, Y. Angew. Chem. Int. Ed. 2009, 48, 1304. doi: 10.1002/anie.200804883

High-Yielding Synthesis of the Anti-Influenza Neuraminidase Inhibitor (-)-Oseltamivir by Two “One-Pot” Sequences
Ishikawa, H.; Suzuki,T.; Orita,H.;  Uchimaru, T.; Hayashi, Y. Chem. Eur. J. 2010, 16, 12616. DOI: 10.1002/chem.201001108

解答・解説

本タミフル合成の鍵反応として使われているのは、独自開発した連続反応です[1]。シロキシプロリン触媒(林-ヨルゲンセン触媒)を用いる不斉マイケル付加から、アルケニルホスフェートエステルと炭素-炭素結合を作る形で、タミフルに必要な官能基/不斉点が備わった多置換シクロヘキセン環骨格をワンポットで得ます。

圧巻たる反応ですが、タミフル合成へと繋げるには一つ問題がありました。問題文にもあるとおり、5位の不斉点が逆になったものが取れてしまうのです。

next_move_7a_1

幸運にもここは立体化学が不安定なニトロ基α位なので、なんらかの方法でエピマー化させれば、欲しい構造に導くことが出来ます。

著者らも様々な条件を試しており、実際S体とR体が平衡になる条件を見いだしています。しかし片方だけに収束させることは困難を極めました。というのも計算によると、各ジアステレオマーの最安定配座はエネルギー差がごく僅かしかないのです。たとえ熱力学的平衡に導いても、両者の混ざりとして取れてきてしまうのです。ちなみにこの化合物達は分離も不可能。何とかしなければなりません・・・。

next_move_7a_2

この困難に直面した著者らの発想が冴え渡ります。

シクロヘキセン環をシクロヘキサン環へと変換してやることで、アキシアル/エクアトリアルの関係が明確となり、望みの立体へと異性化しやすくなるだろうと考えたのです。

この目的には合成終盤で取り外せる良い求核剤であるチオールのマイケル付加が選ばれました。そしてこの目論見は期待通りの効果を見せ、見事に欲しい立体へと収束させることに成功したのです。

next_move_7a_3

この変換をもとにさらに条件検討を重ねたすえ、ニトロアルケン原料(1グラム)からなんと60%の収率でタミフル(1.5グラム)を合成することに成功しています。また2013年には後続変換全て含めてワンポットで進行させるプロセスを見いだしてもいます[2]。合成化学のマイルストーンと呼ぶにふさわしい、素晴らしい成果だと思います。

さて、今回の問題はいかがだったでしょうか?みなさんは無事、Dead Endを回避できたでしょうか?

 

関連論文

  1. (a) Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M. Angew. Chem. Int. Ed. 2005, 44, 4212. DOI: 10.1002/anie.200500599 (b) Enders, D.; Huttl, M. R. M.; Grondal, C.; Raabe, G. Nature 2006, 441, 861. doi:10.1038/nature04820
  2. Mukaiyama, T.; Ishikawa, H.; Koshino, H.; Hayashi, Y. Chem. Eur. J. 2013, 52, 17789. doi:10.1002/chem.201302371

 

関連書籍

[amazonjs asin=”3527306447″ locale=”JP” title=”Dead Ends and Detours”][amazonjs asin=”3527329765″ locale=”JP” title=”More Dead Ends and Detours”]

 

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ジアゾニウム塩が開始剤と捕捉剤を“兼務”する
  2. Excelでできる材料開発のためのデータ解析[超入門]-統計の基…
  3. 二重可変領域を修飾先とする均質抗体―薬物複合体製造法
  4. 深海の美しい怪物、魚竜
  5. 魅惑の薫り、漂う香り、つんざく臭い
  6. 高活性、高耐久性を兼ね備えた世界初の固体鉄触媒の開発
  7. スローン賞って知っていますか?
  8. 投票!2013年ノーベル化学賞は誰の手に??

注目情報

ピックアップ記事

  1. AJICAP-M: 位置選択的な抗体薬物複合体製造を可能にするトレースレス親和性ペプチド修飾技術
  2. デヴィッド・エヴァンス David A. Evans
  3. PCに眠る未採択申請書を活用して、外部資金を狙う新たな手法
  4. 化学知識の源、化学同人と東京化学同人
  5. 第174回―「特殊な性質を持つフルオロカーボンの化学」David Lemal教授
  6. 知られざる法科学技術の世界
  7. 基底三重項炭化水素トリアンギュレンの単離に世界で初めて成功
  8. 元素名と中国語
  9. 米国ACSジャーナル・冊子体廃止へ
  10. 出光・昭和シェル、統合を発表

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年7月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

モータータンパク質に匹敵する性能の人工分子モーターをつくる

第640回のスポットライトリサーチは、分子科学研究所・総合研究大学院大学(飯野グループ)原島崇徳さん…

マーフィー試薬 Marfey reagent

概要Marfey試薬(1-フルオロ-2,4-ジニトロフェニル-5-L-アラニンアミド、略称:FD…

UC Berkeley と Baker Hughes が提携して脱炭素材料研究所を設立

ポイント 今回新たに設立される研究所 Baker Hughes Institute for…

メトキシ基で転位をコントロール!Niduterpenoid Bの全合成

ナザロフ環化に続く二度の環拡大というカスケード反応により、多環式複雑天然物niduterpenoid…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP