[スポンサーリンク]

化学者のつぶやき

ビタミンB12を触媒に用いた脱ハロゲン化反応

ビタミンB12(図1a 別名:コバラミン)は、コリン環の中心にコバルトイオンが存在する金属錯体です。

ビタミンB12は配位子Lによって機能が異なり、生体内で10種類以上の酵素反応に関与しています。その例として、異性化反応(図1Ba)、メチル化反応(図 1Bb)、脱ハロゲン化反応(図Bc)が挙げられます[1]

2016-01-18_13-40-29

図1 (A) コバラミンの構造と誘導体 (B) 酵素反応の例

 

なかでも、テトラクロロエチレンの還元的脱ハロゲン化は、環境汚染物質の分解法の一つとして注目されています。この反応は、酵素中のビタミンB12と鉄-硫黄クラスターによって進行します(図 2A)。この反応機構の詳細は未だに解明されておらず、図2Bに示す2つの経路が提唱されています。いずれの経路においても、Co(I)が活性種となってテトラクロロエチレンを2電子還元することでトリクロロエチレンが生成し、鉄-硫黄クラスターがコバルトを2価から1価に還元することで触媒的に反応が進行します[2]

 

2016-01-18_13-41-09

図2 (A) 脱ハロゲン化酵素の構造 (B) 脱ハロゲン化反応の機構

 

本記事では九州大学の久枝良雄教授らによって報告された「ビタミンB12を触媒に用いた脱ハロゲン化反応」とその関連研究について紹介したいと思います。

 

ビタミンB12の生体外での応用

久枝らは、生物によって代謝されるため環境汚染性が低いビタミンB12を用いたグリーンケミストリーを展開しています。ビタミンB12の酵素反応を模倣するには、コバルト種を2価から1価に還元する鉄-硫黄クラスターの代わりとなるものが必要となりますが、ここで化学還元剤を用いるとグリーンケミストリーの考え方に反します。

そこで久枝らは、豊富でクリーンなエネルギーである光を用いた生体模倣触媒を開発してました。今回紹介するビタミンB12を酸化チタンに固定化させた触媒はその中の1つです。酸化チタンの励起電子の還元力は-0.5 V vs. NHEであり、コバルトイオンを2価から1価に還元するのに十分です[3]。実際に、彼らは2009年に触媒1を開発し、DDTの還元的脱ハロゲン化を達成しました(図 3A)[4]。この触媒は不均一系触媒であるので、反応後の分離が容易かつ、再利用も可能であることからクリーンな触媒と言えます。

これまで、Co(I)の自然酸化や触媒の分解を防ぐため、不活性ガス雰囲気下で反応を行ってきました。そこで最近、久枝らは、空気中でも安定な触媒2を開発し窒素雰囲気下で反応を行ったところ、ベンゾトリクロリドからジクロロスチルベンが得られました[5]。一方で空気中では脱ハロゲン化で止まらず、さらに酸素と反応し、エステルが生成することを見出しました(図 3B)。この反応は、中間体として酸クロリドが生成するため、過剰量のアミン存在下ではアミドが生成する。また、この反応は空気中、室温で進行するため、環境への負担が少ないと考えられます。

 

2016-01-18_13-43-23

図3 (A) DDTの脱ハロゲン化反応 (B) 最近開発した空気に安定な触媒による脱ハロゲン化反応

 

まとめ

DDTやベンゾトリクロリドは第1類特定化学物質に指定されており、「微量の曝露でがん等の慢性・遅発性障害を引き起こす物質」として位置づけられています。これまでにもビタミンB12を触媒に用いた脱ハロゲン化が報告されていますが、さらに反応を空気中で行うことで環境汚染物質を有用な化合物へ変換できたのが注目すべき点だと思います。

 

参考文献

  1.  Giedyk, M.; Goliszewska, K.; Gryko, D. Chem. Soc. Rev. 2015, 44, 3391. DOI: 10.1039/C5CS00165J
  2. Hisaeda, Y. Bull. Jpn. Soc. Coord. Chem. 2009, 54, 10. [PDF]
  3. Izumi, S.; Simakoshi, H.; Abe, M.; Hisaeda, Y. Dalton Trans. 2010, 39, 3302. DOI: 10.1039/B921802E
  4. Shimakoshi, H.; Abiru, M.; Izumi, S.; Hisaeda, Y. Chem. Commun. 2009, 6427. DOI: 10.1039/B913255D
  5. Simakoshi, H.; Hisaeda, Y. Angew. Chem. Int. Ed. 2015, 54, 15439. DOI:10.1002/anie.201507782
The following two tabs change content below.
bona
愛知で化学を教えています。よろしくお願いします。
bona

最新記事 by bona (全て見る)

関連記事

  1. 化学研究ライフハック: 研究現場のGTD式タスク管理 ①
  2. わずか6工程でストリキニーネを全合成!!
  3. 不安定炭化水素化合物[5]ラジアレンの合成と性質
  4. ビッグデータが一変させる化学研究の未来像
  5. 2009年人気記事ランキング
  6. Independence Day
  7. 有機反応を俯瞰する ーヘテロ環合成: C—X 結合で切る
  8. 未来のノーベル化学賞候補者

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ニコラス反応 Nicholas Reaction
  2. エーザイ、アルツハイマー治療薬でスウェーデン企業と提携
  3. 国際化学オリンピックのお手伝いをしよう!
  4. 資生堂企業資料館
  5. バーゼル Basel:製薬・農薬・化学が集まる街
  6. 三和化学と住友製薬、糖尿病食後過血糖改善剤「ミグリトール」の共同販促契約を締結
  7. 可視光照射でトリメチルロックを駆動する
  8. U≡N結合、合成さる
  9. B≡B Triple Bond
  10. 有機合成化学協会誌2018年9月号:キラルバナジウム触媒・ナフタレン多量体・バイオインスパイアード物質変換・エラジタンニン・モルヒナン骨格・ドナー・アクセプター置換シクロプロパン・フッ素化多環式芳香族炭化水素

関連商品

注目情報

注目情報

最新記事

有機合成化学協会誌2019年1月号:大環状芳香族分子・多環性芳香族ポリケチド天然物・りん光性デンドリマー・キャビタンド・金属カルベノイド・水素化ジイソブチルアルミニウム

有機合成化学協会が発行する有機合成化学協会誌、2019年1月号がオンライン公開されました。今…

リチウムイオンバッテリーの容量を最大70%まで向上させる技術が開発されている

スマートフォンや電気自動車の普及によって、エネルギー密度が高く充電効率も良いリチウムイオンバッテリー…

学部4年間の教育を振り返る

皆様、いかがお過ごしでしょうか。学部4年生の筆者は院試験も終わり、卒論作成が本格的に始まるまでの束の…

ダイセルが開発した新しいカラム: DCpak PTZ

ダイセルといえば「キラルカラムの雄」として知られており、光学活性化合物を分離するキラルカラム「CHI…

台湾当局、半導体技術の対中漏洩でBASFの技術者6人を逮捕

台湾の内政部(内政省)刑事局は7日、半導体製造に使う特殊な化学品の技術を中国企業に漏洩した営業秘密法…

「低分子医薬品とタンパク質の相互作用の研究」Harvard大学 Woo研より

海外留学記第29回目は、Harvard大学のChiristina Woo研に留学されている天児由佳さ…

Chem-Station Twitter

PAGE TOP