[スポンサーリンク]

化学者のつぶやき

サイコロを作ろう!

有機化合物の中には、「サイコロ」があるって知ってますか?

キュバン(Cubane)という炭化水素がそれに当たります。こんな化合物が存在すること自体も驚きですが、実際に合成してしまう人がいたことにも驚きです。最近では、こんな分子に医薬としての使い道が見えつつあるという、更に驚きの事実も出てきつつあります。

cubane_2

史上初の合成が達成されて以来50年が経ちます[1]が、今回はこのキュバン分子にフォーカスした話題を紹介したいと思います。

キュバンとは?

キュバンは、サイコロ状の炭素骨格を持った炭化水素C8H8です。全炭素8個がすべて等価であり、かつ通常の炭素-炭素結合(sp3混成構造)からは、大きくひずみがかかっています。分子サイズは小さいですが、足がかりとなる官能基が無いこと、環ひずみと対称性がきわめて高いことから、かえって合成しにくい分子といえます。

炭素4員環(シクロブタン)の環ひずみエネルギーは109.9kJ/molと見積もられています。それが6つ緊密に縮環したキュバンは、それよりかなり大きなひずみエネルギー(161.5kJ/mol)を内包します。このため合成できたとしても、自発的に爆発的分解してしまうのではないかとも考えられていたのです。

しかし、1964年、フィリップ・イートンらのグループがその化学合成・単離に成功し、予想外に安定な結晶性化合物であることを明らかにしました[2]。キュバンの結晶はきらきら輝く菱面体晶(rhombic crystal)で、常圧下・常温よりやや高い温度で昇華し、封管中で133.5℃の融点を示しました。また分解は220℃以上で起きることもわかりました。

キュバンの物性(論文[1]より引用)

キュバンの物性(論文[1]より引用)

キュバンを合成する

以下に、イートンらの合成経路[2]を示します。ひずみの少ない5員炭素環を含むかご形分子を段階的に環縮小し、キュバン骨格へと導くというのが基本戦略となっています。

まずはブロモシクロペンタジエノンが自発的に二量化を起こしたものが鍵中間体となります。適切な保護をしたのち、[2+2]光環化で4員環構造の一部を組み上げます。そこから塩基性条件に伏すことでFavorskii転位を進行させ、5員環を4員環に縮小させます。この過程でカルボン酸が余りますが、これはラジカル脱炭酸条件によって飛ばしてしまいます。以下同じプロセスを繰り返すことにより、キュバンの合成に成功しています。

cubane_3

その後、この合成経路をベースにJohn Tsanaktsidisらがさらに短工程・大量合成可能な経路(>500g)を確立しています[3]。

世界最強の爆薬:オクタニトロキュバン

キュバンは合成してみると意外にも安定な分子でした。しかしながら大きな歪みエネルギーを内包する分子であることも確かです。不安定化学結合/官能基を沢山付けてやると、さらに高エネルギー化合物になると考えられます。

イートンらはこの発想のもと、キュバンの頂点にニトロ基を置換させた化合物オクタニトロキュバンを設計し、1999年に合成しました。

cubane_4

この分子は理論上、世界最強の爆薬であるとされています。合成も構造決定もかなり大変だったようですが、その報告[4]には見事な1本の13C NMRデータが示されています。合成コストが非常に高いため、爆薬としての実用化はされないと言われていますが・・・

オクタニトロキュバンの14N-decoupled 13C NMRチャート(論文[4]より)

オクタニトロキュバンの14N-decoupled 13C NMRチャート(論文[4]より)

医薬への応用

昨今の医薬業界は転換期を迎えており、良い低分子医薬が出づらくなっているという背景があります。この問題を受け、最近では特殊構造を持つビルディングブロックの探索[5]が進んでいます。

キュバンも実はその一つ[6]で有り、ベンゼン環の生物学的等価体として活用可能とされています。もともとはキュバンを合成したイートン教授による発想[1b]であり、いろいろな事例[5b]から実効性がありそうなことも分かっていたようです。最近になって、ようやくこの事実が丁寧に調べられました[7]。

両者は似ても似つかない形に見えるのですが、下図のようにナナメからキュバンを眺めるのがポイントです。実はベンゼン環と似通ったサイズ・形を持っているということがわかります。

(論文[7]より引用)

(論文[7]より引用)

実際に様々な既知医薬品のベンゼン環をキュバンに置き換えて(下図)調べて見たところ、同等もしくはオリジナル以上の薬理活性を示すことが分かりました。非平面構造化による溶解性の向上、強固なsp3C-H結合を持つことによる代謝耐性の獲得などが、要因として考察されています。

cubane_synth_9

医薬品のキュバン置換体(論文[7]より引用)

おわりに

これ以外にも分子の多面体は考えられており、正四面体分子テトラヘドラン(置換基有り)、正12面体分子ドデカヘドランなどはすでに合成が達成されています。興味のある方はこちらの資料(PDF)などをご覧になってみると良いでしょう。機会があれば、また詳しく取りあげてみたいと思います。

(2000/7/3 by ボンビコール、2016/2/7 加筆修正 by cosine)
(※本記事は以前より公開されていたものを加筆修正し、「つぶやき」に移行したものです)

関連文献

  1. (a)”Cubane: 50 Years Later” Biegasiewicz, K. F.; Griffiths, J. R.; Savage, G. P.; Tsanaktsidis. J.; Priefer, R. Chem. Rev. 2015, 115, 6719. DOI: 10.1021/cr500523x (b) “Cubanes: Starting Materials for the Chemistry of the 1990s and the New Century” Eaton, P. E. Angew. Chem. Int. Ed. Engl. 199231,1421. DOI: 10.1002/anie.199214211
  2. (a) “The Cubane System” Eaton, P. E.; Cole, T. W. J. Am. Chem. Soc. 1964, 86, 962. DOI: 10.1021/ja01059a072 (b) ”Cubane” Eaton, P. E.; Cole, T. W. J. Am. Chem. Soc. 1964, 86, 3157. DOI: 10.1021/ja01069a041
  3. (a) “Barton Decarboxylation of Cubane-1,4-dicarboxylic Acid: Optimized Procedures for Cubanecarboxylic Acid and Cubane” Eaton, P. E.; Nordari, N.; Tsanaktsidis, J.; Upadhyaya. S. P. Synthesis 1995, 501. DOI: 10.1055/s-1995-3961 (b) “Dimethyl Cubane-1,4-dicarboxylate: A Practical Laboratory Scale Synthesis” Bliese, M.; Tsanaktsidis, J. Aust. J. Chem. 1997, 50, 189. doi:10.1071/C97021 (c) “Pilot-Scale Production of Dimethyl 1,4-Cubanedicarboxylate” Tsanaktsidis, J. et al. Org. Process Res. Dev. 2013, 17, 1503. DOI: 10.1021/op400181g 

  4. “Hepta- and Octanitrocubanes” Zhang, M.-X.; Eaton, P. E.; Gilardi, R. “Hepta- and Octanitrocubanes”. Angew. Chem., Int. Ed. 2000, 39, 401. DOI: 10.1002/(SICI)1521-3773(20000117)39:2<401::AID-ANIE401>3.0.CO;2-P
  5. (a) “New and unusual scaffolds in medicinal chemistry”  Marson, C. M. Chem. Soc. Rev. 2011, 40, 5514.  DOI: 10.1039/c1cs15119c (b) “Pharmaceuticals that contain polycyclic hydrocarbon scaffolds” Stockdale, T. P.; Williams, C. M. Chem. Soc. Rev. 2015, 44, 7737.   DOI: 10.1039/C4CS00477A
  6. “Cubanes in Medicinal Chemistry: Synthesis of Functionalized Building Blocks” Wlochal, J.; Davies, E. D. M.; Burton, J. Org. Lett. 2012, 16, 4094. DOI: 10.1021/ol501750k

  7. “Validating Eaton’s Hypothesis: Cubane as a Benzene Bioisostere” Williams, C. M. et al. Angew. Chem. Int. Ed. 2016DOI: 10.1002/ange.201510675

関連リンク

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 未来の車は燃料電池車でも電気自動車でもなくアンモニア車に?
  2. 反応中間体の追跡から新反応をみつける
  3. MRS Fall Meeting 2012に来ています
  4. 人と人との「結合」を「活性化」する
  5. 冬虫夏草由来の画期的新薬がこん平さんを救う?ーFTY720
  6. リンと窒素だけから成る芳香環
  7. 暑いほどエコな太陽熱冷房
  8. アルカロイドの大量生産

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 難溶性多糖の成形性を改善!新たな多糖材料の開発に期待!
  2. カネボウ化粧品、バラの香りの秘密解明 高級香水が身近に?
  3. 中学生の研究が米国の一流論文誌に掲載された
  4. 光学活性ジペプチドホスフィン触媒を用いたイミンとアレン酸エステルの高エナンチオ選択的 [3+2] 環化反応
  5. ニホニウムグッズをAmazonでゲットだぜ!
  6. エステルからエーテルをつくる脱一酸化炭素金属触媒
  7. 思わぬ伏兵・豚インフルエンザ
  8. アメリカで Ph. D. を取る –希望研究室にメールを送るの巻– (準備編)
  9. 速報! ノーベル物理学賞2014日本人トリプル受賞!!
  10. アルデヒドを分液操作で取り除く!

関連商品

注目情報

注目情報

最新記事

ルミノール誘導体を用いるチロシン選択的タンパク質修飾法

2015年、東京工業大学・中村浩之らは、ルミノール誘導体と鉄-ポルフィリン複合体(ヘミン)を用い、チ…

酵素触媒によるアルケンのアンチマルコフニコフ酸化

酵素は、基質と複数点で相互作用することにより、化学反応を厳密にコントロールしています。通常のフラ…

イオンの出入りを制御するキャップ付き分子容器の開発

第124回のスポットライトリサーチは、金沢大学 理工研究域物質化学系錯体化学研究分野(錯体化学・超分…

リチウムイオン電池の課題のはなし-1

Tshozoです。以前リチウムイオン電池に関するトピックを2つほど紹介した(記事:リチウムイ…

アルコールをアルキル化剤に!ヘテロ芳香環のC-Hアルキル化

2015年、プリンストン大学・D. W. C. MacMillanらは、水素移動触媒(HAT)および…

三種類の分子が自発的に整列した構造をもつ超分子共重合ポリマーの開発

第123回のスポットライトリサーチは、テキサス大学オースティン校博士研究員(Jonathan L. …

Chem-Station Twitter

PAGE TOP