[スポンサーリンク]

odos 有機反応データベース

ツヴァイフェル オレフィン化 Zweifel Olefination

[スポンサーリンク]

概要

アルケニル金属試薬をボレート形成させて、ヨウ素処理の転位によって置換アルケンを得る手法。

同様の組み合わせからアルケンを与える鈴木-宮浦クロスカップリングとは相補的な幾何異性体を与える。遷移金属触媒を必要としないことも特徴である。

基本文献

  • Zweifel, G.; Arzoumanian, H.; Whitney, C. C. J. Am. Chem. Soc. 1967, 89, 3652. doi:10.1021/ja00990a061
  • Zweifel, G.; Fisher, R. P.; Snow, J. T.; Whitney, C. C. J. Am. Chem. Soc. 1971, 93, 6309. doi: 10.1021/ja00752a075
  • Zweifel, G.; Fisher, R. P.; Snow, J. T.; Whitney, C. C. J. Am. Chem. Soc. 1972, 94, 6560. doi:10.1021/ja00773a059
  • Suzuki, A.; Miyaura, N.; Abiko, S.; Itoh, M.; Brown, H. C.; Sinclair, J. A.; Midland, M. M.  J. Am. Chem. Soc. 1973, 95, 3080. doi: 10.1021/ja00790a092
  • Matteson, D. S.; Jesthi, P. K. J. Organomet. Chem. 1976, 110, 25. doi:10.1016/S0022-328X(00)90155-4
  • Evans, D. A.; Thomas, R. C.; Walker, J. A. Tetrahedron Lett. 1976, 17, 1427. doi:10.1016/S0040-4039(00)71274-3
  • Evans, D. A.; Crawford, T. C.; Thomas, R. C.; Walker, J. A. J. Org. Chem. 1976, 41, 3947. doi:10.1021/jo00887a003
  • Slayden. S. W. J. Org. Chem. 1981, 46, 2311. doi:10.1021/jo00324a020
  • Bonet, A.; Odachowski, M.; Leonori, D.; Essafi, S.; Aggarwal, V. K. Nat. Chem. 2014, 6, 584.  doi:10.1038/nchem.1971
  • Armstrong, R. J.; García-Ruiz, C.; Myers, E. L.; Aggarwal, V. K. Angew. Chem. Int. Ed. 2017, 56, 786. doi:10.1002/anie.201610387
  • Armstrong, R. J.; Niwetmarin, W.; Aggarwal, V. K. Org. Lett. 2017, 19, 2762. doi:10.1021/acs.orglett.7b01124
<review>

開発の経緯

1967年にGeorge Zweifel (UC Davis)らによってアルキンのヒドロホウ素化に依って得られるアルケニルボランを用いる条件が開発された。

George Zweifel

トリアルキル型ホウ素を用いる初期の条件では、中間体が酸素などに弱く、どの置換基が転移するかも予測しづらいという問題を抱えていた。ボロン酸エステルを用いる改良法がEvans、Mattersonらによって独立に報告され、この問題は解決された。

反応機構

1,2-メタレート転位は立体特異的に進行する。ホウ素置換基の立体化学も保存される。最終的にボロン酸エステルが塩基と反応し、anti脱離を起こす形で望みのオレフィンが得られる。

反応例

バリエーション

構築困難とされる四級炭素の立体特異的合成にも活用可能[1]。

ボレートに対し、アリール塩化セレン→酸化の工程を附すことで、stereodivergentな選択性にてオレフィンを得ることが出来る[2]。

アルキニル基はボレート形成が可逆であるため、転位を起こさずヨウ素で捕捉されたヨウ化アルキンを与えてしまう。Zweifel条件でアルキニル化を行なうには、脱離基を備えるアルケニルメタル種を用いて反応条件に附し、脱離させるという迂回工程を経る必要がある[3]。

金属触媒により誘起される1,2-メタレート転位をクロスカップリング反応に連結させた事例[4]。

全合成への応用

無置換ビニル基を立体特異的に導入できる数少ない手法の一つである。下記は(+)-faranalの全合成へと応用した事例[5]。

(−)‐Filiforminの全合成[6]:分子内Zweifel反応により、縮環骨格に備わる連続不斉中心を効率的に合成している。

Solanoeclepin Aの形式全合成[7]:橋頭位ビニル基の導入に本反応が効果的に用いられている。

debromohamigeran Eの全合成[8]:ヒドロキシ基配向型ジボリル化→鈴木・宮浦カップリング→Zweifel反応によって、置換基を立体選択的かつ位置選択的に導入している。

[5]-ラダラン脂質の合成[9]:エナンチオ選択的触媒的ヒドロホウ素化と組み合わせて用いている。

Vinigrolの全合成[10]

参考文献

  1. (a) Sonawane, R. P.; Jheengut, V.; Rabalakos, C.; LaroucheGauthier, R.; Scott, H. K.; Aggarwal, V. K. Angew. Chem. Int. Ed. 2011, 50, 3760. doi:10.1002/anie.201008067 (b) Pulis, A. P.; Blair, D. J.; Torres, E.; Aggarwal, V. K. J. Am. Chem. Soc. 2013, 135, 16054. doi:10.1021/ja409100y
  2. Armstrong, R. J.; García-Ruiz, C.; Myers, E. L.; Aggarwal, V. K. Angew. Chem. Int. Ed. 2017, 56, 786. doi:10.1002/anie.201610387
  3. Wang, Y.; Noble, A.; Myers, E. L.; Aggarwal, V. K. Angew. Chem. Int. Ed. 2016, 55, 4270. doi:10.1002/anie.201600599
  4. Zhang, L.; Lovinger, G. J.; Edelstein, E. K.; Szymaniak, A. A.; Chierchia, M. P.; Morken, J. P. Science 2016, 351, 70. DOI: 10.1126/science.aad6080
  5. Dutheuil, G.; Webster, M. P.; Worthington, P. A.; Aggarwal, V. K. Angew. Chem. Int. Ed. 2009, 48, 6317. doi:10.1002/anie.200901194
  6. Blair, D. J.; Fletcher, C. J.; Wheelhouse, K. M. P.; Aggarwal, V. K. Angew. Chem. Int. Ed. 2014, 53, 5552. doi:10.1002/anie.201400944
  7. Kleinnijenhuis, R. A.; Timmer, B. J. J.; Lutteke, G.; Smits, J. M. M.; de Gelder, R.; van Maarseveen, J. H.; Hiemstra, H. Chem. Eur. J. 2016, 22, 1266. doi:10.1002/chem.201504894
  8. Blaisdell, T. P.; Morken, J. P. J. Am. Chem. Soc. 2015, 137, 8712. doi:10.1021/jacs.5b05477
  9. Mercer, J. A. M.; Cohen, C. M.; Shuken, S. R.; Wagner, A. M.; Smith, M. W.; Moss, F. R.; Smith, M. D.; Vahala, R.; Gonzalez-Martinez, A.; Boxer, S. G.; Burns, N. Z. J. Am. Chem. Soc. 2016, 138, 15845.doi: 10.1021/jacs.6b10706
  10. Yu, X.; Xiao, L.; Wang, Z.: Luo, T. J. Am. Chem. Soc. 2019, 141, 3440.  DOI: 10.1021/jacs.9b00621

関連反応

関連書籍

関連リンク

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ブレデレック オキサゾール合成 Bredereck Oxazol…
  2. 福山クロスカップリング Fukuyama Cross Coupl…
  3. ビニルシクロプロパン転位 Vinylcyclopropane R…
  4. 向山水和反応 Mukaiyama Hydration
  5. タングステン酸光触媒 Tungstate Photocataly…
  6. モヴァッサージ脱酸素化 Movassaghi Deoxigena…
  7. ソープ・インゴールド効果 Thorpe-Ingold Effec…
  8. バートン脱カルボキシル化 Barton Decarboxylat…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 「同時多発研究」再び!ラジカル反応を用いたタンパク質の翻訳後修飾
  2. 藤沢の野鳥変死、胃から農薬成分検出
  3. シモンズ・スミス反応 Simmons-Smith Reaction
  4. 元素の和名わかりますか?
  5. ダウとデュポンの統合に関する小話
  6. 「生合成に基づいた網羅的な天然物全合成」—カリフォルニア大学バークレー校・Sarpong研より
  7. 抗体触媒 / Catalytic Antibody
  8. オルトメタル化 Directed Ortho Metalation
  9. 結晶構造データは論文か?CSD Communicationsの公開
  10. 第82回―「金属を活用する超分子化学」Michaele Hardie教授

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

第142回―「『理想の有機合成』を目指した反応開発と合成研究」山口潤一郎 教授

第142回の化学者インタビューは日本から、皆さんご存じ、山口潤一郎教授の登場です。名古屋大学理学部化…

【書籍】ゼロからの最速理解 プラスチック材料化学

今月発売された『ゼロからの最速理解 プラスチック材料化学』(佐々木 健夫 著,コロナ社)という書籍を…

重水は甘い!?

同位体はある元素、すなわち同一の原子番号をもつ原子核において、中性子数の異なる核種のことをいいますね…

人物でよみとく化学

概要化学の歴史をつくった約50人を収録。高校・大学の化学の勉強に役立つ16テーマをあつかい、…

金属ナトリウム分散体(SD Super Fine ™)

概要金属ナトリウム分散体(SD Super Fine &#x2122;)は、金属ナトリウムの微粒…

アクセラレーションプログラム 「BRAVE 2021 Spring」 参加チームのエントリー受付中!(5/10〆切)

Beyond Next Ventures株式会社(本社:東京都中央区、代表取締役社⻑:伊藤毅、以下「…

赤キャベツから新しい青色天然着色料を発見 -青色1号に代わる美しく安定なアントシアニン色素-

青の食品着色料として広く使われる化学合成の「青色1号」とほぼ同じ色で、長期保存時の安定性に優れた天然…

砂塚 敏明 Toshiaki Sunazuka

砂塚 敏明 (すなづか としあき)は、日本の有機化学者である。学校法人北里研究所 理事、北里大学大村…

Chem-Station Twitter

PAGE TOP