[スポンサーリンク]

odos 有機反応データベース

ツヴァイフェル オレフィン化 Zweifel Olefination

[スポンサーリンク]

概要

アルケニル金属試薬をボレート形成させて、ヨウ素処理の転位によって置換アルケンを得る手法。

同様の組み合わせからアルケンを与える鈴木-宮浦クロスカップリングとは相補的な幾何異性体を与える。遷移金属触媒を必要としないことも特徴である。

基本文献

  • Zweifel, G.; Arzoumanian, H.; Whitney, C. C. J. Am. Chem. Soc. 1967, 89, 3652. doi:10.1021/ja00990a061
  • Zweifel, G.; Fisher, R. P.; Snow, J. T.; Whitney, C. C. J. Am. Chem. Soc. 1971, 93, 6309. doi: 10.1021/ja00752a075
  • Zweifel, G.; Fisher, R. P.; Snow, J. T.; Whitney, C. C. J. Am. Chem. Soc. 1972, 94, 6560. doi:10.1021/ja00773a059
  • Suzuki, A.; Miyaura, N.; Abiko, S.; Itoh, M.; Brown, H. C.; Sinclair, J. A.; Midland, M. M.  J. Am. Chem. Soc. 1973, 95, 3080. doi: 10.1021/ja00790a092
  • Matteson, D. S.; Jesthi, P. K. J. Organomet. Chem. 1976, 110, 25. doi:10.1016/S0022-328X(00)90155-4
  • Evans, D. A.; Thomas, R. C.; Walker, J. A. Tetrahedron Lett. 1976, 17, 1427. doi:10.1016/S0040-4039(00)71274-3
  • Evans, D. A.; Crawford, T. C.; Thomas, R. C.; Walker, J. A. J. Org. Chem. 1976, 41, 3947. doi:10.1021/jo00887a003
  • Slayden. S. W. J. Org. Chem. 1981, 46, 2311. doi:10.1021/jo00324a020
  • Bonet, A.; Odachowski, M.; Leonori, D.; Essafi, S.; Aggarwal, V. K. Nat. Chem. 2014, 6, 584.  doi:10.1038/nchem.1971
  • Armstrong, R. J.; García-Ruiz, C.; Myers, E. L.; Aggarwal, V. K. Angew. Chem. Int. Ed. 2017, 56, 786. doi:10.1002/anie.201610387
  • Armstrong, R. J.; Niwetmarin, W.; Aggarwal, V. K. Org. Lett. 2017, 19, 2762. doi:10.1021/acs.orglett.7b01124
<review>

開発の経緯

1967年にGeorge Zweifel (UC Davis)らによってアルキンのヒドロホウ素化に依って得られるアルケニルボランを用いる条件が開発された。

George Zweifel

トリアルキル型ホウ素を用いる初期の条件では、中間体が酸素などに弱く、どの置換基が転移するかも予測しづらいという問題を抱えていた。ボロン酸エステルを用いる改良法がEvans、Mattersonらによって独立に報告され、この問題は解決された。

反応機構

1,2-メタレート転位は立体特異的に進行する。ホウ素置換基の立体化学も保存される。最終的にボロン酸エステルが塩基と反応し、anti脱離を起こす形で望みのオレフィンが得られる。

反応例

バリエーション

構築困難とされる四級炭素の立体特異的合成にも活用可能[1]。

ボレートに対し、アリール塩化セレン→酸化の工程を附すことで、stereodivergentな選択性にてオレフィンを得ることが出来る[2]。

アルキニル基はボレート形成が可逆であるため、転位を起こさずヨウ素で捕捉されたヨウ化アルキンを与えてしまう。Zweifel条件でアルキニル化を行なうには、脱離基を備えるアルケニルメタル種を用いて反応条件に附し、脱離させるという迂回工程を経る必要がある[3]。

金属触媒により誘起される1,2-メタレート転位をクロスカップリング反応に連結させた事例[4]。

全合成への応用

無置換ビニル基を立体特異的に導入できる数少ない手法の一つである。下記は(+)-faranalの全合成へと応用した事例[5]。

(−)‐Filiforminの全合成[6]:分子内Zweifel反応により、縮環骨格に備わる連続不斉中心を効率的に合成している。

Solanoeclepin Aの形式全合成[7]:橋頭位ビニル基の導入に本反応が効果的に用いられている。

debromohamigeran Eの全合成[8]:ヒドロキシ基配向型ジボリル化→鈴木・宮浦カップリング→Zweifel反応によって、置換基を立体選択的かつ位置選択的に導入している。

[5]-ラダラン脂質の合成[9]:エナンチオ選択的触媒的ヒドロホウ素化と組み合わせて用いている。

Vinigrolの全合成[10]

参考文献

  1. (a) Sonawane, R. P.; Jheengut, V.; Rabalakos, C.; LaroucheGauthier, R.; Scott, H. K.; Aggarwal, V. K. Angew. Chem. Int. Ed. 2011, 50, 3760. doi:10.1002/anie.201008067 (b) Pulis, A. P.; Blair, D. J.; Torres, E.; Aggarwal, V. K. J. Am. Chem. Soc. 2013, 135, 16054. doi:10.1021/ja409100y
  2. Armstrong, R. J.; García-Ruiz, C.; Myers, E. L.; Aggarwal, V. K. Angew. Chem. Int. Ed. 2017, 56, 786. doi:10.1002/anie.201610387
  3. Wang, Y.; Noble, A.; Myers, E. L.; Aggarwal, V. K. Angew. Chem. Int. Ed. 2016, 55, 4270. doi:10.1002/anie.201600599
  4. Zhang, L.; Lovinger, G. J.; Edelstein, E. K.; Szymaniak, A. A.; Chierchia, M. P.; Morken, J. P. Science 2016, 351, 70. DOI: 10.1126/science.aad6080
  5. Dutheuil, G.; Webster, M. P.; Worthington, P. A.; Aggarwal, V. K. Angew. Chem. Int. Ed. 2009, 48, 6317. doi:10.1002/anie.200901194
  6. Blair, D. J.; Fletcher, C. J.; Wheelhouse, K. M. P.; Aggarwal, V. K. Angew. Chem. Int. Ed. 2014, 53, 5552. doi:10.1002/anie.201400944
  7. Kleinnijenhuis, R. A.; Timmer, B. J. J.; Lutteke, G.; Smits, J. M. M.; de Gelder, R.; van Maarseveen, J. H.; Hiemstra, H. Chem. Eur. J. 2016, 22, 1266. doi:10.1002/chem.201504894
  8. Blaisdell, T. P.; Morken, J. P. J. Am. Chem. Soc. 2015, 137, 8712. doi:10.1021/jacs.5b05477
  9. Mercer, J. A. M.; Cohen, C. M.; Shuken, S. R.; Wagner, A. M.; Smith, M. W.; Moss, F. R.; Smith, M. D.; Vahala, R.; Gonzalez-Martinez, A.; Boxer, S. G.; Burns, N. Z. J. Am. Chem. Soc. 2016, 138, 15845.doi: 10.1021/jacs.6b10706
  10. Yu, X.; Xiao, L.; Wang, Z.: Luo, T. J. Am. Chem. Soc. 2019, 141, 3440.  DOI: 10.1021/jacs.9b00621

関連反応

関連書籍

関連リンク

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ショッテン・バウマン反応 Schotten-Baumann Re…
  2. ボロン酸MIDAエステル MIDA boronate
  3. ペイン転位 Payne Rearrangement
  4. コニア エン反応 Conia–Ene Reaction
  5. カバチニク・フィールズ反応 Kabachnik-Fields R…
  6. カンプス キノリン合成 Camps Quinoline Synt…
  7. 重水素標識反応 Deuterium Labeling React…
  8. ボールドウィン則 Baldwin’s Rule

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 吸入ステロイド薬「フルタイド」の調査結果を発表
  2. フェネストレンの新規合成法
  3. 有機ホウ素化合物を用いたSNi型立体特異的β-ラムノシル化反応の開発
  4. 化学企業のグローバル・トップ50が発表【2018年版】
  5. 科学を伝える-サイエンスコミュニケーターのお仕事-梅村綾子さん
  6. 酸化グラフェンに放射性物質を除去する機能が報告される
  7. 有合化若手セミナーに行ってきました
  8. 凸版印刷、有機ELパネル開発
  9. 有機反応を俯瞰する ー縮合反応
  10. 東北地方太平洋沖地震に募金してみませんか。

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年10月
« 9月   11月 »
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

注目情報

最新記事

Delta 6.0.0 for Win & Macがリリース!

NMR解析ソフトDeltaの最新版6.0.0がリリースされました!&nb…

こんなのアリ!?ギ酸でヒドロカルボキシル化

可視光レドックス触媒によるギ酸を炭素源としたヒドロカルボキシル化が開発された。チオール触媒を介したラ…

ポンコツ博士研究員の海外奮闘録 ケムステ異色連載記

本稿は,世間一般にほとんど知られていない地方私立大学で学位を修了し,エリートでもなく何も成し遂げてい…

新型コロナの飲み薬モルヌピラビルの合成・生体触媒を用いた短工程化

新型コロナウイルス (SARS-CoV-2) 感染症に対する飲み薬として、Merck…

秋吉一成 Akiyoshi Kazunari

秋吉 一成(あきよしかずなり)は日本の有機化学者である。京都大学大学院 工学研究科 高分子化学専攻 …

NIMS WEEK2021-材料研究の最新成果発表週間- 事前登録スタート

時代を先取りした新材料を発信し続けるNIMS。その最新成果を一挙ご紹介する、年に一度の大イベント「N…

元素記号に例えるなら何タイプ? 高校生向け「起業家タイプ診断」

今回は化学の本質とは少し離れますが、元素をモチーフにしたあるコンテンツをご紹介します。実験の合間…

多価不飽和脂肪酸による光合成の不活性化メカニズムの解明:脂肪酸を活用した光合成活性の制御技術開発の可能性

第346回のスポットライトリサーチは、東京大学 大学院総合文化研究科(和田・神保研究…

10手で陥落!(+)-pepluanol Aの全合成

高度な縮環構造をもつ複雑天然物ペプラノールAの全合成が、わずか10工程で達成された。Diels–Al…

吉野彰氏が2021年10月度「私の履歴書」を連載。

今年の10月はノーベル化学賞が有機化学分野から出て、物理学賞を真鍋淑郎先生が受賞して、非常に盛り上が…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP