[スポンサーリンク]

化学者のつぶやき

直鎖アルカンの位置選択的かつ立体選択的なC–H結合官能基化

[スポンサーリンク]

位置選択的かつ立体選択的なC–H活性化

有機化合物の炭素-水素結合を切断し、有用な官能基へと変換するC–H結合直接変換反応はハロゲン化等の事前官能基化が不要であり副生成物も少ないため、有機合成における究極の変換反応の一つであると言えます。しかし、有機化合物に最も多く存在する炭素-水素結合のうち、望みのC–H結合を位置選択的かつ立体選択的に活性化させること容易ではありません。とりわけ反応性が乏しいsp3C–H結合を活性化させることは困難を極めます。エモリー大学のDavies教授らは、C–H直接変換反応において頻繁にみられる制限(分子内反応や配向基を用いた反応)を受けないより理想的な変換反応を目指して触媒開発を行ってきました。例えばこれまでにロジウムカルベノイドを用いたベンジル位やアリル位および、アルコキシ基のα位等のsp3C–H結合の位置選択的・立体選択的な活性化及び炭素-炭素結合形成反応を報告しています (scheme 1)。1

2016-10-07_22-56-08

Scheme 1. Site- and stereoselective C–H functionalization with rhodium carbenoids.

最近Davies教授らは最も難易度の高い基質の一つである、直鎖アルカンの位置および立体選択的なC–H結合官能基化を達成しました(Scheme 2)。論文はこちら。

“Site-selective and stereoselective functionalization of unactivated C­­–H bonds”

Liao, K.; Negretti, S.; Musaev, D. G.; Bacsa, J.; Davies, H. M. L.;Nature 2016, 533, 230. DOI: 10.1038/nature17651

本記事ではDaviesらの行った過去の研究における知見2を踏まえて論文本文中では触れられていない本反応の選択性発現の機構を中心に補足説明してみましょう。

2016-10-07_22-57-19

Scheme 2. Rhodium-catalyzed site- and stereoselective C–H insertion of pentane.

触媒設計に基づく位置選択性および立体選択性の発現

  • 位置選択性

本反応はロジウムカルベン種の生成と続くカルベンのC–H結合への挿入によって進行します(scheme 3)。反応の位置選択性は電子的要因と立体的要因によって決定されます。C–H結合切断の際、水素原子はヒドリドとしてカルベン炭素上に転移すると考えられる。電子的要因を考えると超共役によってC­–H結合切断の際に生じる正電荷を安定化できる3級および2級炭素上での反応が進行しやすいと考えられます。一方、立体的要因を考えた場合、嵩高い配位子を用いているため、立体障害の少ない1級炭素上での反応が進行しやすいと予想できます。

2016-10-07_22-58-08

Scheme 3. Reaction mechanism and tendency of site-selectivity.

今回著者らは配位子のカルボキシ基のジェミナル位に3,5-二置換アリール基を導入した際、ペンタンの2位炭素選択的かつ立体選択的に挿入反応が進行することを見出しました。

  • 立体選択性

今回の反応に用いた触媒は嵩高い3,5-ジアリールフェニル基がジロジウム触媒のつくる平面に対して互い違いに配置された構造をもち、D2対称性を示します(論文中 Figre 5)。これを模式的に表すと、Figure 1のようになります (青色の壁は、3,5-ジアリールフェニル基を表している)。

2016-10-07_23-00-50

Figure 1. Structure and configuration of D2-symmetric rhodium catalyst.

 

生成物のカルボニル基α位の3級炭素の立体化学はロジウムカルベン錯体に基質が接近する際の面選択性によって決定されます (Figure 2a, A)。まず、ロジウムカルベン錯体においてカルベン炭素に結合したアリール基はカルベン炭素の作る平面に平行になるような配座をとり、エステル基はこの平面に直行するような配座を取ることが計算によって明らかにされています(Figure 2b)。3このときカルベン上で最も嵩高いトリクロロエトキシ基 (Figure 2bではメトキシ基) が錯体の最も空いた空間を占めるように配置されます。この配座では、基質はトリクロロエトキシ基および配位子 (青色の壁)との立体反発を避けるようにロジウムカルベン錯体に接近するため、立体選択性が発現します。

2016-10-07_23-01-48

Figure 2. The steric factors that influence the facial selectivity.

一方、生成物のカルボニル基β位の3級炭素の立体化学はロジウムカルベン錯体に基質が接近するときの基質の立体配座によって決定します (Figre 3)。本反応で用いたロジウムカルベン錯体の反応中心まわりの立体障害は、(1)嵩高いジアリールフェニル基 (青色の壁)によるものと (2) 配位子のジアリールフェニル基以外の部分によるもの2つに分けられる。基質がロジウムカルベン錯体に接近する際最も嵩高い置換基 (L)は (1)および(2)を避けるように配置され、2番目に嵩高い置換基 (M)は、(1)を避けるように配置されます (Figure 3a)。この結果、基質がロジウムカルベン錯体に接近する際の立体配座が制限され立体選択性が発現します (Figure 3b)。

2016-10-07_23-02-20

Figure 3. Configuration of substrate approaching to rhodium-carbene complex.

まとめ

今回著者らは、嵩高い不斉ロジウム触媒による直鎖アルカンの位置選択的かつ立体選択的なC–H結合官能基化に成功しました。ここで紹介したペンタン以外に、オクタンや末端にハロゲノ基やシリル基、エステル基をもつ基質においても同様に高選択的に反応が進行することが示されており、有用な反応であると言える。また、C–H結合のわずかな性質の違いを利用して高い選択性の制御に成功した本研究は今後の有機金属化学の発展に大きな影響を及ぼすと考えられます。

 

参考文献

  1. (a) Qin, C. M.; Davies, H. M. L. J. Am. Chem. Soc. 2014, 136, 9792. DOI: 10.1021/ja504797x (b) Guptill, D. M.; Davies, H. M. L. J. Am. Chem. Soc. 2014, 136, 17718. DOI: 10.1021/ja5107404
  2. Davies, H, M, L.; Daniel, M, Chem. Soc. Rev. 2011, 40, 1857. DOI: 10.1039/C0CS00217H
  3. Hansen, J.; Autschbach, J.; Davies, H. M. L. J. Org. Chem. 2009, 74, 6555. DOI: 10.1021/jo9009968

関連書籍

[amazonjs asin=”3319246283″ locale=”JP” title=”C-H Bond Activation and Catalytic Functionalization I (Topics in Organometallic Chemistry)”][amazonjs asin=”148223310X” locale=”JP” title=”C-H Bond Activation in Organic Synthesis”]
Avatar photo

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 腎細胞がん治療の新薬ベルツチファン製造プロセスの開発
  2. 新しい2-エキソメチレン型擬複合糖質を開発 ~触媒的な合成法確立…
  3. 日本薬学会第144年会付設展示会ケムステキャンペーン
  4. 高電気伝導性を有する有機金属ポリイン単分子ワイヤーの開発
  5. テルペンを酸化的に”飾り付ける”
  6. 【本日14時締切】マテリアルズ・インフォマティクスで活用される計…
  7. ヒュッケル法(前編)~手計算で分子軌道を求めてみた~
  8. 文献管理のキラーアプリとなるか? 「ReadCube」

注目情報

ピックアップ記事

  1. Biotage Selekt+ELSD【実機レビュー】
  2. 次世代電池の開発と市場予測について調査結果を発表
  3. 反応化学と生命科学の融合で新たなチャレンジへ【ケムステ×Hey!Laboインタビュー】
  4. 実験を加速する最新機器たち|第9回「有機合成実験テクニック」(リケラボコラボレーション)
  5. 化学における特許権侵害訴訟~特許の真価が問われる時~
  6. 最近の有機化学注目論文3
  7. ディーン・タンティロ Dean J. Tantillo
  8. メバスタチン /Mevastatin
  9. 東京大学大学院理学系研究科化学専攻 大学院入試情報
  10. ゲルハルト・エルトゥル Gerhard Ertl

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年10月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

ナノグラフェンの高速水素化に成功!メカノケミカル法を用いた芳香環の水素化

第660回のスポットライトリサーチは、名古屋大学大学院理学研究科(有機化学研究室)博士後期課程3年の…

第32回光学活性化合物シンポジウム

第32回光学活性化合物シンポジウムのご案内光学活性化合物の合成および機能創出に関する研究で顕著な…

位置・立体選択的に糖を重水素化するフロー合成法を確立 ― Ru/C触媒カートリッジで150時間以上の連続運転を実証 ―

第 659回のスポットライトリサーチは、岐阜薬科大学大学院 アドバンストケミストリー…

【JAICI Science Dictionary Pro (JSD Pro)】CAS SciFinder®と一緒に活用したいサイエンス辞書サービス

ケムステ読者の皆様には、CAS が提供する科学情報検索ツール CAS SciFind…

有機合成化学協会誌2025年5月号:特集号 有機合成化学の力量を活かした構造有機化学のフロンティア

有機合成化学協会が発行する有機合成化学協会誌、2025年5月号がオンラインで公開されています!…

ジョセップ・コルネラ Josep Cornella

ジョセップ・コルネラ(Josep Cornella、1985年2月2日–)はスペイン出身の有機・無機…

電気化学と数理モデルを活用して、複雑な酵素反応の解析に成功

第658回のスポットライトリサーチは、京都大学大学院 農学研究科(生体機能化学研究室)修士2年の市川…

ティム ニューハウス Timothy R. Newhouse

ティモシー・ニューハウス(Timothy R. Newhouse、19xx年xx月x日–)はアメリカ…

熊谷 直哉 Naoya Kumagai

熊谷 直哉 (くまがいなおや、1978年1月11日–)は日本の有機化学者である。慶應義塾大学教授…

マシンラーニングを用いて光スイッチング分子をデザイン!

第657 回のスポットライトリサーチは、北海道大学 化学反応創成研究拠点 (IC…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP