[スポンサーリンク]

化学者のつぶやき

ケトンを配向基として用いるsp3 C-Hフッ素化反応

[スポンサーリンク]

ジョン・ホプキンス大学のThomas Lectkaらは、ユビキタス官能基であるケトンを配向基として用い、剛直な環状化合物において位置選択的なsp3 C-Hフッ素化を達成した。

“Ketones as directing groups in photocatalytic sp3 C-H fluorination”
Bume, D. D.; Pitts, C. R.; Ghorbani, F.; Harry, S. A.; Capilato, J. N.; Siegler, M. A.; Lectka, T. * Chem. Sci. 2017, 8, 6918-6923. doi:10.1039/C7SC02703F

問題設定

位置選択的sp3 C-Hフッ素化の報告は未だ限られている。既報の反応条件では、innateな反応性の高いC-H結合もしくは立体的に近づきやすいC-H結合の変換、または配向基を用いるC-H変換戦略によって位置選択性が達成されていた。
電子求引基から遠く、電子豊富なC-H結合ほどC-H均等開裂からのラジカル生成が起きやすいことはよく知られている。しかしLectkaらは、電子求引基であるエノンが配向基として働き、多環性テルペノイドの位置選択的な光化学的C-Hフッ素化が進行することを見いだしていた[1]。その一方で、同条件そのままでは、ケトンを配向基として用いる反応に適用することはできなかった(非選択的なフッ素化が起きる)。

技術や手法のキモ

300 nmのUV照射条件にて基質やフッ素源自体が励起されてしまうと望ましくない非選択的反応が生じると考え、可視光下で励起される光増感剤を用いている。これにより、より温和な条件下に望ましい反応性・選択性にてC-Hフッ素化体が得られるのではないかと考えた。この増感剤の添加が前報のフッ素化[1]からの重要な変更点である。

主張の有効性検証

①反応条件について

光増感剤のスクリーニングを行ったところ、三重項増感剤として知られているベンジルが最も高収率を示した。フッ素源に関してはSelectfluorがよく、NFSIやN-fluoropyridinium塩などでは目的のフッ素化体は得られなかった。また、Selectfluorの量を増やすと選択性が低下し、望ましくないフッ素化体の増加が見られた。
光、ベンジル、フッ素化剤のいずれかが欠けた場合、反応は進行しない。空気下で反応を行った場合も反応は進行しない。光なしの還流加熱条件では目的物は得られず、trace量のフッ素化体が生じるのみであった。

②基質一般性の検討

冒頭図の条件をもちいて一般性の検討を行っている。

総じて以下の傾向が見て取れる。

  • 多環性の剛直骨格を有する基質において位置選択的なフッ素化が起きる。
  • 反応はケトンと5員環・6員環を組める位置で起きる。ただし1級C-Hはフッ素化されない。
  • エチルベンゼンを基質とするとフッ素化が起きない。ケトンが重要な役割を果たしていることが示唆される。
  • ケトン部位は環内にあっても環外にあってもよい。配座が固定されていない場合には、下図のように位置異性体が混ざりうる。

  • 選択性発現のためには配座剛直性が必要で、直鎖のケトンに対する反応制御は難しい。たとえば2-ヘプタノンにおいてはβ:γ:δ=1 : 2.3 : 1.3の位置異性体混合物が生じる。2-デカノン、2-ドデカノンではさらに複雑な混合物が生じる。
③反応機構について

前報のエノンを配向基として利用する反応条件[1]では、分子内水素原子移動(HAT)過程で位置選択性を説明していた。しかしながら今回の場合、

  1. 分子内HATに有利な希釈条件にしても直鎖ケトンでの結果が改善しなかった
  2. ベンジルの三重項エネルギー(53 kcal/mol)が、脂肪族ケトンへと三重項-三重項エネルギー移動を起こせる(80 kcal/mol)ほどは大きくない。

といった2点からHAT過程が介在する機構ではないと考えている。

ベンジルは基質からSelectflourへのエネルギー移動を促進し、窒素ラジカル中間体を形成し、酸化剤として働き、電子移動・プロトン移動を引き起こし、反応を進めているのではないかと考えている。実際、光照射なしで窒素ラジカル中間体を出せるSelectfluor+BEt3条件では、今回の反応と同等の選択性が見られる。

厳密なメカニズム解析は未完であり、詳細には今後の研究が待たれる。

議論すべき点

  • 位置選択性を決めている要素として、基質依存な面が大きい(配座剛直性が必須であるなど)。やはり反応剤や触媒コントロールで位置選択性を発現させたいところ。また、完全直鎖ケトンとまでは言わなくても、ある程度直鎖の基質に対しても選択性を出せる反応が望ましい。

次に読むべき論文は?

  • 今回の場合は、ケトンに対して5員環もしくは6員環を組める位置が変換され、それよりも遠隔位の変換は困難である。ケトン―触媒間で水素結合形成などを行って触媒を適切な位置に固定できれば、遠隔位選択的な変換も達成できるだろうか。非共有結合性相互作用を用いる位置選択的C-H官能基化に関する総説[2]は、その参考情報として有益かも知れない。

参考文献

  1. Pitts, C. R.; Bume, D. D.; Harry, S. A.; Siegler, M. A.; Lectka. T. J. Am. Chem. Soc. 2017, 139, 2208. DOI: 10.1021/jacs.7b00335
  2. Davis, H. J.; Phipps, R. J. Chem. Sci. 2017, 8, 864. doi:10.1039/C6SC04157D

関連書籍

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 量子化学計算を駆使した不斉ホスフィン配位子設計から導かれる新たな…
  2. 反応探索にDNAナノテクノロジーが挑む
  3. 怒涛の編集長 壁村耐三 ~論文と漫画の共通項~
  4. 文具に凝るといふことを化学者もしてみむとてするなり⑧:ネオジム磁…
  5. 二重芳香族性を示す化合物の合成に成功!
  6. 「不斉有機触媒の未踏課題に挑戦する」—マックス・プランク石炭化学…
  7. 【速報】2010年ノーベル物理学賞に英の大学教授2人
  8. ホウ素ーホウ素三重結合を評価する

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 細菌ゲノム、完全合成 米チーム「人工生命」に前進
  2. 亜鉛クロロフィル zinc chlorophyll
  3. 最も引用された論文
  4. デービーメダル―受賞者一覧
  5. 2009年10大化学ニュース
  6. 「世界最小の元素周期表」が登場!?
  7. 第36回 生体を模倣する化学― Simon Webb教授
  8. ナノチューブを大量生産、産業技術総合研が技術開発
  9. 単結合を極める
  10. 凸版印刷、有機ELパネル開発

関連商品

注目情報

注目情報

最新記事

勤務地にこだわり理想も叶える!転職に成功したエンジニアの話

総合職であれば、本社以外の勤務や転勤を職務の一貫として、身近なものとして考えられる方は多いのではない…

決算短信~日本触媒と三洋化成の合併に関連して~

投資家でなければ関係ないと思われがちな決算短信ですが、実は企業のいろいろな情報が正直に書いてある書類…

複雑にインターロックした自己集合体の形成機構の解明

第199回のスポットライトリサーチは、東京大学総合文化研究科(平岡研究室)博士課程・立石友紀さんにお…

小型質量分析装置expression® CMSを試してみた

学生が増えすぎて(うれしい悲鳴ですが)、機器を購入する余裕などこれっぽっちもない代表です。さ…

有機合成化学協会誌2019年6月号:不斉ヘテロDiels-Alder反応・合金ナノ粒子触媒・グラフェンナノリボン・触媒的光延反応・フェイズ・バニシング

有機合成化学協会が発行する有機合成化学協会誌、2019年6月号がオンライン公開されました。梅…

東大キャリア教室で1年生に伝えている大切なこと: 変化を生きる13の流儀

概要不確実な時代を生き抜くキャリアを創るには? 各界で活躍する東大OB・OGが、学生生活や就…

Chem-Station Twitter

PAGE TOP