[スポンサーリンク]

化学者のつぶやき

−(マイナス)と協力して+(プラス)を強くする触媒

[スポンサーリンク]

水素結合によりアニオンを捕捉することで、対カチオンは活性化され高いルイス酸性をもつ。そのルイス酸によって不活性な求電子剤をも活性化させる手法が報告された。

キラルな水素結合供与性分子触媒

エナンチオ選択的な化合物の合成手法としてキラルなイオン対分子触媒(図1A)を用いる方法がある。

しかし、イオン対と基質との相互作用は弱く、実際の反応に適用するには障壁があった。それを克服した例の1つに優れたアニオン識別能をもつ(チオ)尿素を用いた”anion-binding”型のイオン対触媒がある[1]。”anion-binding”型のイオン対触媒は3つの形式に大別できる(図1B)。

本論文の著者であるハーバード大学のJacobsenらは 1998年に、チオ尿素の水素結合によってStrecker反応が高エナンチオ選択的に触媒されることを報告した[2]。これが最初の不斉”anion-binding”型イオン対触媒反応であり、”direct activation”の例でもある。

同じくJacobsenらは2004年, 2009年にPictet–Spengler反応において、それぞれ”anion abstraction”型[3]、”Brønsted acid co-catalysis”型[4]の反応を報告した。しかし、これらの方法では高い求電子性をもつ基質でないと反応に適用することができなかった。

そこで今回、Jacobsenらはスクアラミド誘導体を用いてケイ素トリフラートのアニオンを捕捉することで、ケイ素のルイス酸性を高める触媒戦略を開発したので紹介する(図1C)。

図1.(A) キラルなイオン対触媒の分類 (B) Anion-binding型イオン対触媒の分類 (C) 本論文の触媒設計コンセプト

 

“Lewis acid enhancement by hydrogen-bond donors for asymmetric catalysis”

Banik, S. M.; Levina, A.; Hyde, A. M.; Jacobsen, E. N. Science2017, 358, 761.

DOI: 10.1126/science.aao5894

論文著者の紹介

研究者:Eric N. Jacobsen

研究者の経歴:

1978-1982 B.S., New York University (Prof. Yorke E. Rhodes)
1982-1986 Ph.D., University of California, Berkeley (Prof. Robert G. Bergman)
1986-1988 Posdoc, Massachusetts Institute of Technology (Prof. K. Barry Sharpless)
1988-1991 Assistant Professor, University of Illinois at Urbana-Champaign
1991-1993 Associate Professor, University of Illinois at Urbana-Champaign
1993- Professor, Harvard University

研究内容: 新規不斉触媒反応の開発と応用

論文の概要

著者らは、ケイ素トリフラートにスクアラミド誘導体1を作用させることで高活性なルイス酸が得られると考えた。

その概念を検証するべく、既知の向山アルドール反応を用いて反応進行の確認・条件検討を行い最適の触媒1を見出した(本文Fig. 1B)。スクアラミドはチオ尿素よりも効果的にアニオンと水素結合を形成する[5]

さらに、シリルエノールエーテル2とフラン3との[4+3]付加環化反応(図2A)に対し触媒1を用いた。この反応において速度論的考察、赤外分光測定、DFT 計算を行うことで反応機構(図2B)を推定した。ケイ素トリフラート(R3SiOTf)はそれ単体では高いルイス酸性を示さないが、1の存在下では高いルイス酸性を示す。このR3SiOTfと1が協働することで、不活性な2をオキシアリルカチオン中間体に変換し、フランとの[4+3]付加環化反応を進行させる。

図2. (A) [4+3]付加環化反応 (B) 推定反応機構

以上、ケイ素トリフラートとスクアラミド誘導体を組み合わせることにより活性の高いルイス酸を生成し、反応に適用する新たなアプローチを取り上げた。不活性な求電子剤への適用・優れたエナンチオ選択性の発現といった利点によって様々な反応に適用されていくことを望む。

参考文献

  1. Brak, K.; Jacobsen, E. N.  Angew. Chem., Int. Ed. 2013, 52, 534. DOI: 10.1002/anie.201205449
  2. Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 4901. DOI: 10.1021/ja980139y
  3. Taylor, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 10558. DOI: 10.1021/ja046259p
  4. Klausen, R. S.; Jacobsen E. N. Org, Lett. 2009, 11, 887. DOI: 10.1021/ol802887h
  5. (a) Jakab, G.; Tancon, C.; Zhang, Z.; Lippert, K. M.; Schreiner, P. R. Org. Lett. 2012, 14, 1724. DOI: 10.1021/ol300307c (b) Ni, X.; Li, X.; Wang, Z.; Cheng, J.-P. Org. Lett. 2014, 16, 1786. DOI: 10.1021/ol5005017
山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 採用面接で 「今年の日本化学会では発表をしますか?」と聞けば
  2. “Wisconsin Process”に…
  3. 化学物質でiPS細胞を作る
  4. GRE Chemistry 受験報告 –試験当日·結果発表編–
  5. 第九回ケムステVシンポジウム「サイコミ夏祭り」を開催します!
  6. 化学者ネットワーク
  7. わずか6工程でストリキニーネを全合成!!
  8. 有機合成化学協会誌2017年5月号 特集:キラリティ研究の最前線…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 新型コロナウイルスの化学への影響
  2. 即戦力のコンパクトFTIR:IRSpirit
  3. 求電子的トリフルオロメチル化 Electrophilic Trifluoromethylation
  4. 電気化学的HFIPエーテル形成を経る脱水素クロスカップリング反応
  5. イミニウム励起触媒系による炭素ラジカルの不斉1,4-付加
  6. 常圧核還元(水添)触媒 Rh-Pt/(DMPSi-Al2O3)
  7. 化学的に覚醒剤を隠す薬物を摘発
  8. 世界の中分子医薬品市場について調査結果を発表
  9. ハッピー・ハロウィーン・リアクション
  10. DNAナノ構造体が誘起・制御する液-液相分離

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年1月
« 12月   2月 »
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

注目情報

最新記事

令和3年度に登録された未来技術遺産が発表 ~フィッシャー・トロプシュ法や記憶媒体に関する資料が登録~

国立科学博物館は、平成20年度から重要科学技術史資料(愛称:未来技術遺産)の登録を実施しています。令…

企業研究者のためのMI入門②:Pythonを学ぶ上でのポイントとおすすめの参考書ご紹介

現在、多くの企業がデジタルトランスフォーメーション(DX)による生産性向上を試みています。特に化学メ…

女子の強い味方、美味しいチョコレート作りを助ける化合物が見出される

チョコレートの製造過程でリン脂質分子を添加するという方法を用いれば、複雑なテンパリング(加熱・せん断…

火力発電所排気ガスや空気から尿素誘導体の直接合成に成功

第339回のスポットライトリサーチは、産業技術総合研究所 触媒化学融合研究センタ…

CV測定器を使ってみた

「電気化学」と聞くと、難しい数式が出てきて何やらとっつきづらいというイメージがある人が多いと思います…

知られざる法科学技術の世界

皆さんは、日本法科学技術学会という学会をご存じでしょうか。法科学は、犯罪における問題を”科学と技術”…

有機合成化学協会誌2021年9月号:ストリゴラクトン・アミド修飾アリル化剤・液相電解自動合成・ビフェニレン・含窒素複素環

有機合成化学協会が発行する有機合成化学協会誌、2021年9月号がオンライン公開されました。9…

イグノーベル賞2021が発表:今年は化学賞あり!

2021年9月9日、「人々を笑わせ考えさせた業績」に送られるイグノーベル賞の第31回授賞式が行われま…

理化学研究所上級研究員(創発デバイス研究チーム)募集

理化学研究所の創発物性科学研究センターで上級研究員の公募を行っております。今回募集対象である、創…

世界最小!? 単糖誘導体から還元反応によって溶ける超分子ヒドロゲルを開発

第338回のスポットライトリサーチは、東 小百合 博士にお願いしました。ヒドロゲルはいわゆる…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP