[スポンサーリンク]

一般的な話題

有機反応を俯瞰する ー付加脱離

[スポンサーリンク]

本連載も3回目に突入しました。さて、付加脱離反応といえば、求核アシル置換反応に代表される反応ですが、カルボニル化合物に限らず芳香族求核置換反応にも見られます。今回は、それらの反応に共通した電子の流れについてまとめていきます。さらに、この機構が進行可能かどうかを見極めるための考え方についても説明します。

基本的な考え方 -叩いて押し返す

さっそくですが今回の基本的な系として、エステルのけん化反応について考えてみます。

%e3%82%b9%e3%82%af%e3%83%aa%e3%83%bc%e3%83%b3%e3%82%b7%e3%83%a7%e3%83%83%e3%83%88-2016-09-28-22-32-22

この反応機構を文章で説明するなら、次のようになります。

  1. まず、水酸化物イオンがカルボニル炭素を攻撃する。この際、カルボニル基の π 結合が切断されて、元の π 結合電子は電気陰性度の大きい酸素原子に移動する。これにより、酸素に負電荷を有し炭素が四面体構造をもつ中間体が生じる。
  2. その四面体中間体は、アルコキシドを脱離させることでカルボニル基を再生してカルボン酸を与える。
  3. 生成したカルボン酸とアルコキシドの間でプロトン交換が起こり、反応が右向きに進む。

この一連の電子の流れのなかの要点を言うと、

求核剤がカルボニル基を叩いて、酸素アニオンが脱離基を押し返す

という部分です。そのことを下の図の左のように 1 つの図に表すと反応の全体像がイメージを掴みやすいと思います。なお ODOS では付加脱離機構を右のように省略して描いている場合があります。左の図では、「電子の流れを一度酸素上で止めて、第二段階で脱離基を押し返す」様子をよく表していると思うので、今回の記事ではおもに左の書き方を使います。

%e3%82%b9%e3%82%af%e3%83%aa%e3%83%bc%e3%83%b3%e3%82%b7%e3%83%a7%e3%83%83%e3%83%88-2016-10-09-22-37-48

さて、この「叩いて(付加)、押し返す(脱離)」というメカニズムで進行する反応は、カルボン酸誘導体における求核アシル置換反応(酸塩化物や酸無水物のエステル化、アミド化、カルボン酸合成)が代表的ですが、他の例として、下に示すような芳香族求核置換反応があります。%e3%82%b9%e3%82%af%e3%83%aa%e3%83%bc%e3%83%b3%e3%82%b7%e3%83%a7%e3%83%83%e3%83%88-2016-09-28-22-33-01

多くの巻矢印が書かれていますが、ベンゼン環は電子を伝える媒体になっているだけです。この反応では、まず求核剤の水酸化物イオンがニトロ基の p 位でベンゼン環の π 電子を叩きます。このとき赤で示した矢印に沿って電子を動かしていくと、負電荷を強力な電子求引基であるニトロ基が電子を受けとめてくれます。続いてニトロ基から電子が押し戻されて、塩化物イオンが脱離し、芳香族環が再生されます。重要なのは「水酸化物イオンが  π 電子を叩いて、ニトロ基に電子を押し込み、続いてニトロ基が電子を押し返して塩化物イオンを追い出す」ことです。したがって、この反応機構は次の図に示すように表すことができます。

%e3%82%b9%e3%82%af%e3%83%aa%e3%83%bc%e3%83%b3%e3%82%b7%e3%83%a7%e3%83%83%e3%83%88-2016-09-28-22-33-12

どこを叩いてよいか

ここまでは、イメージ重視で「叩いて、押し返す」機構(付加脱離機構)を見てきましたが、ここからはその機構が起こりうるかどうかの見分け方について細かい話をしていきます。(長いです。)

まず、第一段階での「叩く」という段階がどのような場合に可能かというと、

  1. 炭素-ヘテロ原子の不飽和結合 (C=O, C=Nなど)
  2. 電子求引基と共役した不飽和結合

において可能です。1. については、カルボン酸誘導体などが当てはまるので、すぐに見分けがつくと思います。カルボン酸誘導体以外では 、C=N の炭素を叩く例として Chichibabin 反応が挙げられます (これについては最後の表に取り上げておきます)。一方、2. については、注意が必要です。例えば芳香族求核置換反応において、脱離基(塩素)に対して電子求引基 (ニトロ基)が m 位にあるような場合を考えてみます。

%e3%82%b9%e3%82%af%e3%83%aa%e3%83%bc%e3%83%b3%e3%82%b7%e3%83%a7%e3%83%83%e3%83%88-2016-09-28-22-33-19

m 位を叩いても、負電荷をニトロ基に押し込めない

この場合は、求核剤がその不飽和結合を叩いても、ニトロ基上に負電荷が来るように電子を押し込むことができず、反応は起こりません。炭素は電気陰性度があまり大きくないので、炭素上に負電荷を置くような中間体は生じにくく、その機構は起こりにくいと考えられます。

一方、脱離基の共役位置(位あるいは p 位)にニトロ基がある場合は、下のようにニトロ基上に電子を押し込むことができます。酸素原子は電気陰性度が大きいので負電荷を安定に引き受けることができます。続いて、ニトロ基上に押し込まれた負電荷を、ベンゼン環を介して押し返すと、塩素が追い出されて付加脱離反応が完結します。

ニトロ基の o-位あるいは p-位を叩くと、ニトロ基上に負電荷を押し込める

ニトロ基の o 位あるいは p 位を叩くと、ニトロ基上に負電荷を押し込める

反応機構の中間体にアニオンが生じるときに、電気陰性度が高い原子(酸素や窒素)にまで負電荷を押し込めるどうかは、その反応が起こるかを見極めるポイントになります。逆にこの種の反応機構を書くときは、中途半端にベンゼン環の途中で電子の流れを止めるのではなく、アニオン安定化基(ここではニトロ基)にまで電子を押し込んで書くべきです。そうすることで、その機構が妥当であることを明示できます。

 どれが追い出されるか

次に「押し返す」段階についての注意点ですが、簡単に言うと負電荷を安定化できるものほどよい脱離基になり、不安定なアニオンは脱離基にはなりません。例えばケトンのアルキル基やアルデヒドの水素はアニオンとしては不安定であり、それらは普通脱離基にはなりません。

脱離基の選び方に関して、もう一度最初のエステルのけん化の例に戻りましょう。そこでは、水酸化物イオンがエステルを叩いてアルコキシドを脱離させる過程 (2 つめの矢印まで) を平衡式として書いていました。なぜでしょうか。

%e3%82%b9%e3%82%af%e3%83%aa%e3%83%bc%e3%83%b3%e3%82%b7%e3%83%a7%e3%83%83%e3%83%88-2016-09-28-22-33-52

実はこの反応では、求核剤としてカルボニル基を攻撃した水酸化物イオンも脱離する可能性があるのです。というのも、この中間体が有する OH 基も OR  基のどちらの置換基が脱離した場合も、1つの酸素上に負電荷を有するタイプの陰イオン (水酸化物イオンあるいはアルコキシド) を生じます。それらに安定性の違いがないため、どちらも同様の脱離能を持ちます。つまり、中間体から続く反応としては、OR 基を押し返して右向きに進むこともありますが、OH 基が押し返されて元に戻るということもありえます。このことが、付加の段階を可逆反応として書いた理由です。

四面体中間体からは水酸化物イオンとアルコキシドのどちらも脱離しうる。

ただし、アルコキシドが脱離した場合には、生成物としてカルボンが生じます。したがってその酸性のプロトンをアルコキシドが受け取る反応が不可逆的に進行するため、反応全体が右に進みます。つまり、エステルのけん化反応では塩基が等量消費されることで、反応が右に進行するということになります

%e3%82%b9%e3%82%af%e3%83%aa%e3%83%bc%e3%83%b3%e3%82%b7%e3%83%a7%e3%83%83%e3%83%88-2016-09-28-22-34-14

アルコキシドが脱離した場合には、非可逆なプロトン交換によって反応全体が右に進む

まとめると、「求核剤と脱離基が同程度の脱離能を有する場合には脱離の段階で求核剤が追い返される場合があり、平衡式で書く」ということです。反応機構を書くときの電子の流れはもちろん大事ですが、「各段階が可逆かどうか」あるいは「平衡をシフトさせる駆動力があるか」を意識しておくことも反応の理解に重要だと思ったので少々長く書かせてもらいました。最後に反応例をあげていますが、各段階を一方通行で書いたり可逆過程で書いているかどうかの基準は、おおよそ上のような考察に基づいています。例えば、最初に書いた芳香族求核置換反応では OH 基よりも Cl 基の方がの脱離能がよいので、OH 基が脱離して出発物に戻る経路は考えにくく、一方通行の矢印で書いています。

というわけで、今回は単純なカルボニル基での求核置換反応から芳香族求核置換反応を「叩いて押し返す」という合言葉をもとに見てきました。その他の類似反応について、簡単なスキームでまとめておきます。

反応名 鍵段階 備考
エステルのけん化  %e3%82%b9%e3%82%af%e3%83%aa%e3%83%bc%e3%83%b3%e3%82%b7%e3%83%a7%e3%83%83%e3%83%88-2016-10-09-22-34-56   求核的アシル置換反応も同様。
%e3%82%b9%e3%82%af%e3%83%aa%e3%83%bc%e3%83%b3%e3%82%b7%e3%83%a7%e3%83%83%e3%83%88-2016-09-28-22-35-09
エステルへの Grignard 反応  %e3%82%b9%e3%82%af%e3%83%aa%e3%83%bc%e3%83%b3%e3%82%b7%e3%83%a7%e3%83%83%e3%83%88-2016-10-09-22-35-16  エステルへの付加脱離反応によりケトンが生成するが、得られたケトンにも Grignard 試薬が付加する(脱離は起こらない)。
%e3%82%b9%e3%82%af%e3%83%aa%e3%83%bc%e3%83%b3%e3%82%b7%e3%83%a7%e3%83%83%e3%83%88-2016-09-28-22-35-19
エステルの LAH 還元  %e3%82%b9%e3%82%af%e3%83%aa%e3%83%bc%e3%83%b3%e3%82%b7%e3%83%a7%e3%83%83%e3%83%88-2016-10-09-22-35-25 エステルへの付加脱離反応によりケトンが生成するが、得られたケトンにも LAH のヒドリドが付加する。
%e3%82%b9%e3%82%af%e3%83%aa%e3%83%bc%e3%83%b3%e3%82%b7%e3%83%a7%e3%83%83%e3%83%88-2016-09-28-22-35-25
Claisen 縮合  %e3%82%b9%e3%82%af%e3%83%aa%e3%83%bc%e3%83%b3%e3%82%b7%e3%83%a7%e3%83%83%e3%83%88-2016-10-09-22-35-45  アルコキシドの脱離により生じた β-ケトエステルが、塩基によって不可逆的に脱プロトン化されるため反応が右へ進む。
%e3%82%b9%e3%82%af%e3%83%aa%e3%83%bc%e3%83%b3%e3%82%b7%e3%83%a7%e3%83%83%e3%83%88-2016-09-28-22-35-38
芳香族求核置換 (SNAr)  %e3%82%b9%e3%82%af%e3%83%aa%e3%83%bc%e3%83%b3%e3%82%b7%e3%83%a7%e3%83%83%e3%83%88-2016-10-09-22-35-56
%e3%82%b9%e3%82%af%e3%83%aa%e3%83%bc%e3%83%b3%e3%82%b7%e3%83%a7%e3%83%83%e3%83%88-2016-09-28-22-36-02
Chichibabin 反応  %e3%82%b9%e3%82%af%e3%83%aa%e3%83%bc%e3%83%b3%e3%82%b7%e3%83%a7%e3%83%83%e3%83%88-2016-10-09-22-36-06
%e3%82%b9%e3%82%af%e3%83%aa%e3%83%bc%e3%83%b3%e3%82%b7%e3%83%a7%e3%83%83%e3%83%88-2016-09-28-22-36-08
Smiles 転位 %e3%82%b9%e3%82%af%e3%83%aa%e3%83%bc%e3%83%b3%e3%82%b7%e3%83%a7%e3%83%83%e3%83%88-2016-10-10-21-36-39
%e3%82%b9%e3%82%af%e3%83%aa%e3%83%bc%e3%83%b3%e3%82%b7%e3%83%a7%e3%83%83%e3%83%88-2016-09-28-22-36-18
Julia-Kocienski オレフィン合成 %e3%82%b9%e3%82%af%e3%83%aa%e3%83%bc%e3%83%b3%e3%82%b7%e3%83%a7%e3%83%83%e3%83%88-2016-10-10-22-51-06 反応機構は Smiles 転位と類似しているが、オレフィン形成が主役
%e3%82%b9%e3%82%af%e3%83%aa%e3%83%bc%e3%83%b3%e3%82%b7%e3%83%a7%e3%83%83%e3%83%88-2016-10-10-22-52-53
Cannizzaro 反応  %e3%82%b9%e3%82%af%e3%83%aa%e3%83%bc%e3%83%b3%e3%82%b7%e3%83%a7%e3%83%83%e3%83%88-2016-10-09-22-36-58  ヒドリドは通常脱離しにくいが、高濃度の塩基性条件では四面体構造の中間体の脱プロトン化によって中間体のアニオン性が高まり、ヒドリドが追い出されると考えられている。
%e3%82%b9%e3%82%af%e3%83%aa%e3%83%bc%e3%83%b3%e3%82%b7%e3%83%a7%e3%83%83%e3%83%88-2016-10-08-23-50-59
Tishchenko 反応  %e3%82%b9%e3%82%af%e3%83%aa%e3%83%bc%e3%83%b3%e3%82%b7%e3%83%a7%e3%83%83%e3%83%88-2016-10-09-22-36-47
%e3%82%b9%e3%82%af%e3%83%aa%e3%83%bc%e3%83%b3%e3%82%b7%e3%83%a7%e3%83%83%e3%83%88-2016-09-28-22-37-04

本連載の過去記事はこちら

関連反応

関連書籍

やぶ

やぶ

投稿者の記事一覧

PhD候補生として固体材料を研究しています。学部レベルの基礎知識の解説から、最先端の論文の解説まで幅広く頑張ります。高専出身。

関連記事

  1. 反応中間体の追跡から新反応をみつける
  2. ローカル環境でPDFを作成する(Windows版)
  3. 生体外の環境でタンパクを守るランダムポリマーの設計
  4. Chemistry on Thanksgiving Day
  5. 反応経路最適化ソフトウェアが新しくなった 「Reaction p…
  6. CO2を用いるアルキルハライドの遠隔位触媒的C-Hカルボキシル化…
  7. 果たして作ったモデルはどのくらいよいのだろうか【化学徒の機械学習…
  8. 銀ジャケを狂わせた材料 ~タイヤからの意外な犯人~

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 化学物質でiPS細胞を作る
  2. [5+1]環化戦略による触媒的置換シクロヘキサン合成
  3. natureasia.com & Natureダイジェスト オンラインセミナー開催
  4. Reaxys PhD Prize再開!& クラブシンポジウム2019参加者募集
  5. 水が促進するエポキシド開環カスケード
  6. 大学院生が博士候補生になるまでの道のり【アメリカで Ph.D. を取る –Qualification Exam の巻 前編】
  7. 天然イミンにインスパイアされたペプチド大環状化反応
  8. 速報・常温常圧反応によるアンモニア合成の実現について
  9. マイルの寄付:東北地方太平洋沖地震
  10. 近傍PCET戦略でアルコキシラジカルを生成する

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年10月
« 9月   11月 »
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

注目情報

最新記事

第21回ケムステVシンポ「Grubbs触媒が導く合成戦略」を開催します!

第21回VシンポはVシンポ協賛企業の一つであるメルク株式会社の持ち込み企画です.視聴される側からする…

【マイクロ波化学(株) 石油化学/プラスチック業界向けウェビナー】 マイクロ波による新事業 石油化学・プラスチック業界のための脱炭素・電化ソリューション

<内容>本イベントでは、石油化学/プラスチック業界における脱炭素・電化の新たなソ…

素材・化学で「どう作るか」を高度化する共同研究拠点、産総研が3カ所で整備

産業技術総合研究所、材料・化学領域は、マテリアル・プロセスイノベーションプラットフォームの整備をスタ…

自己組織化ねじれ双極マイクロ球体から円偏光発光の角度異方性に切り込む

第327回のスポットライトリサーチは、筑波大学大学院数理物質科学研究科 物性・分子工学専攻 山本・山…

第159回―「世界最大の自己組織化分子を作り上げる」佐藤宗太 特任教授

第159回の海外化学者インタビューは日本から、佐藤宗太 特任教授です。東京大学工学部応用化学科に所属…

π-アリルイリジウムに新たな光を

可視光照射下でのイリジウム触媒によるアリルアルコールの不斉アリル位アルキル化が開発されたキラルな…

うっかりドーピングの化学 -禁止薬物と該当医薬品-

「うっかりドーピング」という言葉をご存知でしょうか。禁止薬物に該当する成分を含む風邪…

第五回ケムステVプレミアレクチャー「キラルブレンステッド酸触媒の開発と新展開」

新型コロナ感染者数は大変なことになっていますが、無観客東京オリンピック盛り上がっ…

がん治療用の放射性物質、国内で10年ぶり製造へ…輸入頼みから脱却

政府は、がんの治療や臓器の検査をする医療用の放射性物質の国内製造を近く再開する。およそ10年ぶりとな…

三洋化成の新分野への挑戦

三洋化成と長瀬産業は、AI 技術を応用した人工嗅覚で匂いを識別する「匂いセンサー」について共同で事業…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP