[スポンサーリンク]

化学者のつぶやき

(–)-Vinigrol短工程不斉合成

[スポンサーリンク]

保護基を用いない(–)-Vinigrolの不斉全合成が達成された。従来法の分子内Diels–Alder反応(IMDA)を用いず、分子内[5+2]環化付加反応を用いたことが短工程合成の鍵である。

ビニグロール

(–)-Vinigrol(1)は1987年、Hashimotoらによって真菌株Virgaria nigra F-5408から単離されたジテルペンである[1]。(–)-1はヒトの血小板凝集阻害作用を有し、腫瘍壊死因子の拮抗剤になりうる。また、8つの不斉中心をもつ1,5-ブタノデカヒドロナフタレン骨格が複雑な環構造を形成していることから、合成化学的にも注目を集める化合物である。
2009年にBaranらは、分子内Diels–Alder反応(IMDA)とGrob開裂を鍵反応とし、1,5-ブタノデカヒドロナフタレン骨格を構築し、初の(±)-1の全合成を達成した(Figure 1A)[2a]。その後、2012年にはBarriaultらがⅡ型IMDAを用いて(Figure 1B)[2b,3a]、2013年にはNjardarsonらが酸化的脱芳香族化に続くIMDAを用いた(±)-1の全合成を報告した(Figure 1C)[2c,d]。また、ごく最近Luoらによって、渡環Diels–Alder反応を用いた初の(–)-1の不斉全合成が達成された(Figure 1D)[2e]。しかし、いずれの合成法もDiels–Alder反応で骨格形成を行っており、工程数も比較的多いことが課題であった。
今回、南方科技大学のLiらは、クロロジヒドロカルボン(2)から14工程で(–)-1の不斉全合成を達成した(Figure 1E)。合成困難である1,5-ブタノデカヒドロナフタレン骨格を既報とは異なるⅡ型[5+2]環化付加反応によって構築したことが本合成の特徴である[3b]。また、保護基を用いないことで、工程数の短縮にも成功した。

Figure 1. (±)-1の全合成 (A) Baran、(B) Barriault、(C) Njardarson、(–)-1の不斉全合成、(D) Luo、(E) 今回の合成経路

 

“Asymmetric Total Synthesis of ()-Vinigrol”
Min, L.; Lin, X.; Li, C.C. J. Am. Chem. Soc. 2019, 141, 15773–15778.
DOI: 10.1021/jacs.9b08983

論文著者の紹介

研究者:Chuang-Chuang Li

研究者の経歴:
1997–2001 B.S., China Agricultural University, China (Prof. Dao-Quan Wang)
2001–2006 Ph.D., Peking University, China (Prof. Zhen Yang)
2006–2008 Postdoc., The Scripps Research Institute, USA (Prof. Phil S. Baran)
2008–2013.12 Associate Professor, Peking University, China
2014.1–2017.12 Research Professor, Southern University of Science and Technology, China
2018.1– Full Professor, Southern University of Science and Technology, China

研究内容:合成方法論の開発、ケミカルバイオロジー、天然物合成

論文の概要

Liらは21の不斉合成におけるキラルプールとして用いた(Figure 2A)。2から6工程を経て環化付加反応前駆体3へと導いた。次に、ヒドロキニジンを添加することで、中間体5を生成、続くⅡ型分子内[5+2]環化付加反応によって、1,5-ブタノデカヒドロナフタレン4を構築することに成功した。4のWilkinson触媒を用いた水素添加およびヒドロホウ素化により、ジオール体6を得た。続いて、得られた6のIBX酸化を行ったが、所望の7は得られず、予想外のヘテロ架橋構造をもつ9が得られた。その後、ヨウ化サマリウムによる還元でヘテロ架橋構造を開裂させた後、Mander試薬と反応させ、続いてPhSeBrを作用させることによりエノン体10を合成した。10のDIBAL還元により (–)-1への変換を試みたが、11が得られた。そこで、11の一重項酸素-エン反応を行うことで、(–)-1の全合成を達成した。
筆者らは、6のIBX酸化過程を以下のように推定した(Figure 2B)。まず、IBX存在下ヒドロキシ基およびC4a位が酸化され、ヒドロキシジケトン8が生じる。続いて、ヒドロキシ基の立体障害の少ないケトンに対する求核攻撃により、オキセタノン8aが形成する。8aのC3位からC4位への転位が進行し、不安定なb-ラクトン8bが生成する。その後の脱炭酸によりエノール体8cが生じ、ケト-エノール互変異性によりケトン体9が得られる。

Figure 2. (A) (–)-1の合成経路、(B) 6から9の反応機構

 

以上、保護基を用いることなく14工程で(–)-1の不斉全合成が達成された。今後、1,5-ブタノデカヒドロナフタレン骨格を持つ類似体の効率的合成およびそれらを用いた生物学的研究への展開が期待される。

参考文献

  1. Uchida, I.; Ando, T.; Fukami, N.; Yoshida, K.; Hashimoto, M.; Tada, T.; Koda, S.; Morimoto, Y. The Structure of Vinigrol, a Novel Diterpenoid with Antihypertensive and Platelet Aggregation-Inhibitory Activities. J. Org. Chem. 1987, 52, 5292–5293. DOI: 10.1021/jo00232a048
  2. (a)Maimone, T. J.; Shi, J.; Ashida, S.; Baran, P. S. Total Synthesis of Vinigrol. J. Am. Chem. Soc. 2009, 131, 17066–17067. DOI: 10.1021/ja908194b (b) Poulin, J.; Grisé-Bard, C. M.; Barriault, L. A Formal Synthesis of Vinigrol. Angew. Chem., Int. Ed. 2012, 51, 2111–2114. DOI: 10.1002/anie.201108779(c) Yang, Q.; Njardarson, J. T.; Draghici, C.; Li, F. Total Synthesis of Vinigrol. Angew. Chem., Int. Ed. 2013, 52, 8648–8651. DOI: 10.1002/anie.201304624 (d) Yang, Q.; Draghici, C.; Njardarson, J. T.; Li, F.; Smith, B. R.; Das, P. Evolution of an Oxidative Dearomatization Enabled Total Synthesis of Vinigrol. Org. Biomol. Chem. 2014, 12, 330–344. DOI: 10.1039/C3OB42191K (e) Yu, X.; Xiao, L.; Wang, Z.; Luo, T. Scalable Total Synthesis of (–)-Vinigrol. J. Am. Chem. Soc. 2019, 141, 3440–3443. DOI: 10.1021/jacs.9b00621
  3. (a)Juhl, M.; Tanner D. Recent Applications of Intramolecular Diels–Alder Reactions to Natural Product Synthesis. Chem. Soc. Rev. 2009, 38, 2983–2992. DOI: 1039/B816703F (b) Garst, M. E.; McBride, B. J.; DouglassIII, J. G. Intramolecular Cycloadditions with 2-(ω-Alkenyl)-5-Hydroxy-4-Pyrones. Tetrahedron Lett. 1983, 24, 1675–1678. DOI: 10.1016/S0040-4039(00)81742-6

用語説明

分子内Diels–Alder反応(IMDA)[3a]

Ⅰ型およびⅡ型がある(Figure 3A)。Ⅰ型はジエンのC1位にジエノフィルが結合している場合に起こるIMDAの反応形式であり、縮合した二環化合物を与える。一方で、Ⅱ型はジエンのC2位とジエノフィルが結合しており、架橋構造を有する二環化合物を与える。

分子内[5+2]環化付加反応[3b]

IMDA同様にⅠ型およびⅡ型に区別される(Figure 3B)。Ⅰ型はオレフィンのb位にアルキル鎖が結合しており、縮合した二環化合物を与える。一方で、Ⅱ型はa位にアルキル鎖が結合しており、生成物は架橋構造を有する二環化合物を与える。

関連書籍

山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 科研費の審査員を経験して
  2. タミフルの効果
  3. 美麗な元素のおもちゃ箱を貴方に―『世界で一番美しい元素図鑑』
  4. 企業の研究開発のつらさ
  5. 糖鎖クラスター修飾で分子の生体内挙動を制御する
  6. 特定の場所の遺伝子を活性化できる新しい分子の開発
  7. 可視光で働く新しい光触媒を創出 -常識を覆す複合アニオンの新材料…
  8. 有機反応を俯瞰する ー[1,2] 転位

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 温故知新ケミストリー:シクロプロペニルカチオンを活用した有機合成
  2. 女優・吉岡里帆さんが、化学大好きキャラ「DIC岡里帆(ディーアイシーおか・りほ)」に変身!
  3. 創薬・医療分野セミナー受講者募集(Blockbuster TOKYO研修プログラム第2回)
  4. 水が促進するエポキシド開環カスケード
  5. ジアゾメタン
  6. 論文の自己剽窃は推奨されるべき?
  7. つり革に つかまりアセる ワキ汗の夏
  8. 二窒素の配位モードと反応性の関係を調べる: Nature Rev. Chem. 2017-4/5月号
  9. 四国化成の新規複素環化合物群
  10. 2016年2月の注目化学書籍

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年1月
« 12月   2月 »
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

注目情報

最新記事

第165回―「光電変換へ応用可能な金属錯体の開発」Ed Constable教授

第165回の海外化学者インタビューは、エドウィン(エド)・コンステイブル教授です。バーゼル大学化学科…

MEDCHEM NEWSと提携しました

「くすり」に関係する研究者や技術者が約1万7専任が所属する日本薬学会。そ…

抗体を液滴に濃縮し細胞内へ高速輸送:液-液相分離を活用した抗体の新規細胞内輸送法の開発

第341回のスポットライトリサーチは、京都大学 薬学研究科(二木研究室)博士後期課程1年の岩田恭宗さ…

革新的なオンライン会場!「第53回若手ペプチド夏の勉強会」参加体験記

夏休みも去って新学期も始まり、研究者としては科研費申請に忙しい時期ですね。学会シーズン到来の足音も聞…

実験手袋をいろいろ試してみたーつかいすてから高級手袋までー

前回は番外編でしたが、試してみたシリーズ本編に戻ります。引き続き実験関係の消耗品…

第164回―「光・熱エネルギーを変換するスマート材料の開発」Panče Naumov教授

第164回の海外化学者インタビューは、パンチェ・ナウモフ教授です。大阪大学大学院工学研究科 生命先端…

SNS予想で盛り上がれ!2021年ノーベル化学賞は誰の手に?

今年もノーベル賞シーズンの到来です!化学賞は日本時間 10月6日(水) 18時45分に発表です。昨年…

カーボンナノチューブ薄膜のSEM画像を生成し、物性を予測するAIが開発される

先端素材高速開発技術研究組合(ADMAT)、日本ゼオンは産業技術総合研究所(AIST)と共同で、NE…

ケムステ版・ノーベル化学賞候補者リスト【2021年版】

各媒体からかき集めた情報を元に、「未来にノーベル化学賞の受賞確率がある、存命化学者」をリストアップし…

ライトケミカル工業2023卒採用情報

当社の技術グループは、20代~30代の若手社員が重要な主要案件を担当しています。広範囲で高レベルな化…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP