[スポンサーリンク]

化学者のつぶやき

(–)-Vinigrol短工程不斉合成

[スポンサーリンク]

保護基を用いない(–)-Vinigrolの不斉全合成が達成された。従来法の分子内Diels–Alder反応(IMDA)を用いず、分子内[5+2]環化付加反応を用いたことが短工程合成の鍵である。

ビニグロール

(–)-Vinigrol(1)は1987年、Hashimotoらによって真菌株Virgaria nigra F-5408から単離されたジテルペンである[1]。(–)-1はヒトの血小板凝集阻害作用を有し、腫瘍壊死因子の拮抗剤になりうる。また、8つの不斉中心をもつ1,5-ブタノデカヒドロナフタレン骨格が複雑な環構造を形成していることから、合成化学的にも注目を集める化合物である。
2009年にBaranらは、分子内Diels–Alder反応(IMDA)とGrob開裂を鍵反応とし、1,5-ブタノデカヒドロナフタレン骨格を構築し、初の(±)-1の全合成を達成した(Figure 1A)[2a]。その後、2012年にはBarriaultらがⅡ型IMDAを用いて(Figure 1B)[2b,3a]、2013年にはNjardarsonらが酸化的脱芳香族化に続くIMDAを用いた(±)-1の全合成を報告した(Figure 1C)[2c,d]。また、ごく最近Luoらによって、渡環Diels–Alder反応を用いた初の(–)-1の不斉全合成が達成された(Figure 1D)[2e]。しかし、いずれの合成法もDiels–Alder反応で骨格形成を行っており、工程数も比較的多いことが課題であった。
今回、南方科技大学のLiらは、クロロジヒドロカルボン(2)から14工程で(–)-1の不斉全合成を達成した(Figure 1E)。合成困難である1,5-ブタノデカヒドロナフタレン骨格を既報とは異なるⅡ型[5+2]環化付加反応によって構築したことが本合成の特徴である[3b]。また、保護基を用いないことで、工程数の短縮にも成功した。

Figure 1. (±)-1の全合成 (A) Baran、(B) Barriault、(C) Njardarson、(–)-1の不斉全合成、(D) Luo、(E) 今回の合成経路

 

“Asymmetric Total Synthesis of ()-Vinigrol”
Min, L.; Lin, X.; Li, C.C. J. Am. Chem. Soc. 2019, 141, 15773–15778.
DOI: 10.1021/jacs.9b08983

論文著者の紹介

研究者:Chuang-Chuang Li

研究者の経歴:
1997–2001 B.S., China Agricultural University, China (Prof. Dao-Quan Wang)
2001–2006 Ph.D., Peking University, China (Prof. Zhen Yang)
2006–2008 Postdoc., The Scripps Research Institute, USA (Prof. Phil S. Baran)
2008–2013.12 Associate Professor, Peking University, China
2014.1–2017.12 Research Professor, Southern University of Science and Technology, China
2018.1– Full Professor, Southern University of Science and Technology, China

研究内容:合成方法論の開発、ケミカルバイオロジー、天然物合成

論文の概要

Liらは21の不斉合成におけるキラルプールとして用いた(Figure 2A)。2から6工程を経て環化付加反応前駆体3へと導いた。次に、ヒドロキニジンを添加することで、中間体5を生成、続くⅡ型分子内[5+2]環化付加反応によって、1,5-ブタノデカヒドロナフタレン4を構築することに成功した。4のWilkinson触媒を用いた水素添加およびヒドロホウ素化により、ジオール体6を得た。続いて、得られた6のIBX酸化を行ったが、所望の7は得られず、予想外のヘテロ架橋構造をもつ9が得られた。その後、ヨウ化サマリウムによる還元でヘテロ架橋構造を開裂させた後、Mander試薬と反応させ、続いてPhSeBrを作用させることによりエノン体10を合成した。10のDIBAL還元により (–)-1への変換を試みたが、11が得られた。そこで、11の一重項酸素-エン反応を行うことで、(–)-1の全合成を達成した。
筆者らは、6のIBX酸化過程を以下のように推定した(Figure 2B)。まず、IBX存在下ヒドロキシ基およびC4a位が酸化され、ヒドロキシジケトン8が生じる。続いて、ヒドロキシ基の立体障害の少ないケトンに対する求核攻撃により、オキセタノン8aが形成する。8aのC3位からC4位への転位が進行し、不安定なb-ラクトン8bが生成する。その後の脱炭酸によりエノール体8cが生じ、ケト-エノール互変異性によりケトン体9が得られる。

Figure 2. (A) (–)-1の合成経路、(B) 6から9の反応機構

 

以上、保護基を用いることなく14工程で(–)-1の不斉全合成が達成された。今後、1,5-ブタノデカヒドロナフタレン骨格を持つ類似体の効率的合成およびそれらを用いた生物学的研究への展開が期待される。

参考文献

  1. Uchida, I.; Ando, T.; Fukami, N.; Yoshida, K.; Hashimoto, M.; Tada, T.; Koda, S.; Morimoto, Y. The Structure of Vinigrol, a Novel Diterpenoid with Antihypertensive and Platelet Aggregation-Inhibitory Activities. J. Org. Chem. 1987, 52, 5292–5293. DOI: 10.1021/jo00232a048
  2. (a)Maimone, T. J.; Shi, J.; Ashida, S.; Baran, P. S. Total Synthesis of Vinigrol. J. Am. Chem. Soc. 2009, 131, 17066–17067. DOI: 10.1021/ja908194b (b) Poulin, J.; Grisé-Bard, C. M.; Barriault, L. A Formal Synthesis of Vinigrol. Angew. Chem., Int. Ed. 2012, 51, 2111–2114. DOI: 10.1002/anie.201108779(c) Yang, Q.; Njardarson, J. T.; Draghici, C.; Li, F. Total Synthesis of Vinigrol. Angew. Chem., Int. Ed. 2013, 52, 8648–8651. DOI: 10.1002/anie.201304624 (d) Yang, Q.; Draghici, C.; Njardarson, J. T.; Li, F.; Smith, B. R.; Das, P. Evolution of an Oxidative Dearomatization Enabled Total Synthesis of Vinigrol. Org. Biomol. Chem. 2014, 12, 330–344. DOI: 10.1039/C3OB42191K (e) Yu, X.; Xiao, L.; Wang, Z.; Luo, T. Scalable Total Synthesis of (–)-Vinigrol. J. Am. Chem. Soc. 2019, 141, 3440–3443. DOI: 10.1021/jacs.9b00621
  3. (a)Juhl, M.; Tanner D. Recent Applications of Intramolecular Diels–Alder Reactions to Natural Product Synthesis. Chem. Soc. Rev. 2009, 38, 2983–2992. DOI: 1039/B816703F (b) Garst, M. E.; McBride, B. J.; DouglassIII, J. G. Intramolecular Cycloadditions with 2-(ω-Alkenyl)-5-Hydroxy-4-Pyrones. Tetrahedron Lett. 1983, 24, 1675–1678. DOI: 10.1016/S0040-4039(00)81742-6

用語説明

分子内Diels–Alder反応(IMDA)[3a]

Ⅰ型およびⅡ型がある(Figure 3A)。Ⅰ型はジエンのC1位にジエノフィルが結合している場合に起こるIMDAの反応形式であり、縮合した二環化合物を与える。一方で、Ⅱ型はジエンのC2位とジエノフィルが結合しており、架橋構造を有する二環化合物を与える。

分子内[5+2]環化付加反応[3b]

IMDA同様にⅠ型およびⅡ型に区別される(Figure 3B)。Ⅰ型はオレフィンのb位にアルキル鎖が結合しており、縮合した二環化合物を与える。一方で、Ⅱ型はa位にアルキル鎖が結合しており、生成物は架橋構造を有する二環化合物を与える。

関連書籍

山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 特許情報から読み解く大手化学メーカーの比較
  2. ベンゼン環をつないで 8 員環をつくる! 【夢の三次元ナノカーボ…
  3. 化学者ネットワーク
  4. 半導体・センシング材料に応用可能なリン複素環化合物の誘導体化
  5. tRNAの新たな役割:大豆と微生物のコミュニケーション
  6. 電気化学的HFIPエーテル形成を経る脱水素クロスカップリング反応…
  7. 科学はわくわくさせてくれるものーロレアル-ユネスコ賞2015 P…
  8. 過ぎ去りし器具への鎮魂歌

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. Micro Flow Reactor ~革新反応器の世界~ (入門編)
  2. アントンパール 「Monowave300」: マイクロ波有機合成の新武器
  3. NIMSの「新しいウェブサイト」が熱い!
  4. ~祭りの後に~ アゴラ企画:有機合成化学カードゲーム【遊機王】
  5. とある化学者の海外研究生活:スイス留学編
  6. (1-ジアゾ-2-オキソプロピル)ホスホン酸ジメチル:Dimethyl (1-Diazo-2-oxopropyl)phosphonate
  7. フィンケルシュタイン反応 Finkelstein Reaction
  8. 富士通、化合物分子設計統合支援ソフト「キャッシュ」新バージョンを販売
  9. 第86回―「化学実験データのオープン化を目指す」Jean-Claude Bradley教授
  10. ブーボー・ブラン還元 Bouveault-Blanc Reduction

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

[書評]分子の薄膜化技術

概要スマートフォンや大型ディスプレイに搭載されている有機ELは、1980年代から世界中で熾烈…

【ジーシー】新卒採用情報(2022卒)

弊社の社是「施無畏」は、「相手の身になって行動する」といった意味があります。これを具現化することで存…

株式会社ジーシーってどんな会社?

株式会社ジーシーは歯科医療一筋に99年の歴史も持ち、歯科医療業界では国内NO.1のシェアを誇ります。…

ものづくりのコツ|第10回「有機合成実験テクニック」(リケラボコラボレーション)

理系の理想の働き方を考える研究所「リケラボ」とコラボレーションとして「有機合成実験テクニック」の特集…

第13回ケムステVシンポジウム「創薬化学最前線」を開催します!

第12回開催告知をお知らせしたばかりですが、第13回もあります!COVID-19の影響で、世…

Grignard反応剤が一人二役!? 〜有機硫黄化合物を用いるgem-ジフルオロアルケン類の新規合成法〜

第284回のスポットライトリサーチは、名古屋大学トランスフォーマティブ生命分子研究所・前川侑輝 博士…

第134回―「脳神経系の理解を進める分析化学」Jonathan Sweeder教授

第134回の海外化学者インタビューはジョナサン・スウィードラー教授です。イリノイ大学アーバナ・シャン…

第十二回ケムステVシンポ「水・有機材料・無機材料の最先端相転移現象 」

12月になりましたね。大好評のケムステシンポも今年は残りあと2回となりました。第12回となる…

Chem-Station Twitter

PAGE TOP