[スポンサーリンク]

化学者のつぶやき

(–)-Vinigrol短工程不斉合成

[スポンサーリンク]

保護基を用いない(–)-Vinigrolの不斉全合成が達成された。従来法の分子内Diels–Alder反応(IMDA)を用いず、分子内[5+2]環化付加反応を用いたことが短工程合成の鍵である。

ビニグロール

(–)-Vinigrol(1)は1987年、Hashimotoらによって真菌株Virgaria nigra F-5408から単離されたジテルペンである[1]。(–)-1はヒトの血小板凝集阻害作用を有し、腫瘍壊死因子の拮抗剤になりうる。また、8つの不斉中心をもつ1,5-ブタノデカヒドロナフタレン骨格が複雑な環構造を形成していることから、合成化学的にも注目を集める化合物である。
2009年にBaranらは、分子内Diels–Alder反応(IMDA)とGrob開裂を鍵反応とし、1,5-ブタノデカヒドロナフタレン骨格を構築し、初の(±)-1の全合成を達成した(Figure 1A)[2a]。その後、2012年にはBarriaultらがⅡ型IMDAを用いて(Figure 1B)[2b,3a]、2013年にはNjardarsonらが酸化的脱芳香族化に続くIMDAを用いた(±)-1の全合成を報告した(Figure 1C)[2c,d]。また、ごく最近Luoらによって、渡環Diels–Alder反応を用いた初の(–)-1の不斉全合成が達成された(Figure 1D)[2e]。しかし、いずれの合成法もDiels–Alder反応で骨格形成を行っており、工程数も比較的多いことが課題であった。
今回、南方科技大学のLiらは、クロロジヒドロカルボン(2)から14工程で(–)-1の不斉全合成を達成した(Figure 1E)。合成困難である1,5-ブタノデカヒドロナフタレン骨格を既報とは異なるⅡ型[5+2]環化付加反応によって構築したことが本合成の特徴である[3b]。また、保護基を用いないことで、工程数の短縮にも成功した。

Figure 1. (±)-1の全合成 (A) Baran、(B) Barriault、(C) Njardarson、(–)-1の不斉全合成、(D) Luo、(E) 今回の合成経路

 

“Asymmetric Total Synthesis of ()-Vinigrol”
Min, L.; Lin, X.; Li, C.C. J. Am. Chem. Soc. 2019, 141, 15773–15778.
DOI: 10.1021/jacs.9b08983

論文著者の紹介

研究者:Chuang-Chuang Li

研究者の経歴:
1997–2001 B.S., China Agricultural University, China (Prof. Dao-Quan Wang)
2001–2006 Ph.D., Peking University, China (Prof. Zhen Yang)
2006–2008 Postdoc., The Scripps Research Institute, USA (Prof. Phil S. Baran)
2008–2013.12 Associate Professor, Peking University, China
2014.1–2017.12 Research Professor, Southern University of Science and Technology, China
2018.1– Full Professor, Southern University of Science and Technology, China

研究内容:合成方法論の開発、ケミカルバイオロジー、天然物合成

論文の概要

Liらは21の不斉合成におけるキラルプールとして用いた(Figure 2A)。2から6工程を経て環化付加反応前駆体3へと導いた。次に、ヒドロキニジンを添加することで、中間体5を生成、続くⅡ型分子内[5+2]環化付加反応によって、1,5-ブタノデカヒドロナフタレン4を構築することに成功した。4のWilkinson触媒を用いた水素添加およびヒドロホウ素化により、ジオール体6を得た。続いて、得られた6のIBX酸化を行ったが、所望の7は得られず、予想外のヘテロ架橋構造をもつ9が得られた。その後、ヨウ化サマリウムによる還元でヘテロ架橋構造を開裂させた後、Mander試薬と反応させ、続いてPhSeBrを作用させることによりエノン体10を合成した。10のDIBAL還元により (–)-1への変換を試みたが、11が得られた。そこで、11の一重項酸素-エン反応を行うことで、(–)-1の全合成を達成した。
筆者らは、6のIBX酸化過程を以下のように推定した(Figure 2B)。まず、IBX存在下ヒドロキシ基およびC4a位が酸化され、ヒドロキシジケトン8が生じる。続いて、ヒドロキシ基の立体障害の少ないケトンに対する求核攻撃により、オキセタノン8aが形成する。8aのC3位からC4位への転位が進行し、不安定なb-ラクトン8bが生成する。その後の脱炭酸によりエノール体8cが生じ、ケト-エノール互変異性によりケトン体9が得られる。

Figure 2. (A) (–)-1の合成経路、(B) 6から9の反応機構

 

以上、保護基を用いることなく14工程で(–)-1の不斉全合成が達成された。今後、1,5-ブタノデカヒドロナフタレン骨格を持つ類似体の効率的合成およびそれらを用いた生物学的研究への展開が期待される。

参考文献

  1. Uchida, I.; Ando, T.; Fukami, N.; Yoshida, K.; Hashimoto, M.; Tada, T.; Koda, S.; Morimoto, Y. The Structure of Vinigrol, a Novel Diterpenoid with Antihypertensive and Platelet Aggregation-Inhibitory Activities. J. Org. Chem. 1987, 52, 5292–5293. DOI: 10.1021/jo00232a048
  2. (a)Maimone, T. J.; Shi, J.; Ashida, S.; Baran, P. S. Total Synthesis of Vinigrol. J. Am. Chem. Soc. 2009, 131, 17066–17067. DOI: 10.1021/ja908194b (b) Poulin, J.; Grisé-Bard, C. M.; Barriault, L. A Formal Synthesis of Vinigrol. Angew. Chem., Int. Ed. 2012, 51, 2111–2114. DOI: 10.1002/anie.201108779(c) Yang, Q.; Njardarson, J. T.; Draghici, C.; Li, F. Total Synthesis of Vinigrol. Angew. Chem., Int. Ed. 2013, 52, 8648–8651. DOI: 10.1002/anie.201304624 (d) Yang, Q.; Draghici, C.; Njardarson, J. T.; Li, F.; Smith, B. R.; Das, P. Evolution of an Oxidative Dearomatization Enabled Total Synthesis of Vinigrol. Org. Biomol. Chem. 2014, 12, 330–344. DOI: 10.1039/C3OB42191K (e) Yu, X.; Xiao, L.; Wang, Z.; Luo, T. Scalable Total Synthesis of (–)-Vinigrol. J. Am. Chem. Soc. 2019, 141, 3440–3443. DOI: 10.1021/jacs.9b00621
  3. (a)Juhl, M.; Tanner D. Recent Applications of Intramolecular Diels–Alder Reactions to Natural Product Synthesis. Chem. Soc. Rev. 2009, 38, 2983–2992. DOI: 1039/B816703F (b) Garst, M. E.; McBride, B. J.; DouglassIII, J. G. Intramolecular Cycloadditions with 2-(ω-Alkenyl)-5-Hydroxy-4-Pyrones. Tetrahedron Lett. 1983, 24, 1675–1678. DOI: 10.1016/S0040-4039(00)81742-6

用語説明

分子内Diels–Alder反応(IMDA)[3a]

Ⅰ型およびⅡ型がある(Figure 3A)。Ⅰ型はジエンのC1位にジエノフィルが結合している場合に起こるIMDAの反応形式であり、縮合した二環化合物を与える。一方で、Ⅱ型はジエンのC2位とジエノフィルが結合しており、架橋構造を有する二環化合物を与える。

分子内[5+2]環化付加反応[3b]

IMDA同様にⅠ型およびⅡ型に区別される(Figure 3B)。Ⅰ型はオレフィンのb位にアルキル鎖が結合しており、縮合した二環化合物を与える。一方で、Ⅱ型はa位にアルキル鎖が結合しており、生成物は架橋構造を有する二環化合物を与える。

関連書籍

山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 食品衛生関係 ーChemical Times特集より
  2. 海底にレアアース資源!ランタノイドは太平洋の夢を見るか
  3. 1つの蛍光分子から4色の発光マイクロ球体をつくる
  4. BASF150年の歩みー特製ヒストリーブックプレゼント!
  5. 機能性ナノマテリアル シクロデキストリンの科学ーChemical…
  6. 「人工知能時代」と人間の仕事
  7. 【日産化学】画期的な生物活性を有する新規除草剤の開発  ~ジオキ…
  8. 反応の選択性を制御する新手法

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. レーン 超分子化学
  2. リガンド結合部位近傍のリジン側鎖をアジド基に置換する
  3. 「つける」と「はがす」の新技術|分子接合と表面制御 R3
  4. 健康的なPC作業環境のすすめ
  5. 化学でもフェルミ推定
  6. 自転車泥棒を臭いで撃退!?「スカンクロック」を考案
  7. Happy Friday?
  8. Akzonobelとはどんな会社? 
  9. 多種多様な酸化リン脂質を網羅的に捉える解析・可視化技術を開発
  10. 2009年6月人気化学書籍ランキング

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年1月
« 12月   2月 »
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

注目情報

最新記事

【四国化成工業】新卒採用情報(2023卒)

◆求める人財像:『使命感にあふれ、自ら考え挑戦する人財』私たちが社員に求めるのは、「独創力」…

四国化成工業ってどんな会社?

私たち四国化成工業株式会社は、企業理念「独創力」のもと「有機合成技術」を武器に「これまでになかった材…

ポンコツ博士の海外奮闘録 外伝② 〜J-1 VISA取得編〜

ポンコツシリーズ番外編 その2 J-1 VISA取得までの余談と最近日本で問題になった事件を経験した…

結合をアリーヴェデルチ! Agarozizanol Bの全合成

セスキテルペンAgarozizanol Bの全合成が初めて達成された。光照射下で進行するカスケード反…

有機合成化学協会誌2022年1月号:無保護ケチミン・高周期典型金属・フラビン触媒・機能性ペプチド・人工核酸・脂質様材料

有機合成化学協会が発行する有機合成化学協会誌、2022年1月号がオンライン公開されました。本…

第167回―「バイオ原料の活用を目指した重合法の開発」John Spevacek博士

第167回の海外化学者インタビューは、ジョン・スペヴァセック博士です。Aspen Research社…

繊維強化プラスチックの耐衝撃性を凌ぐゴム材料を開発

名古屋大学大学院工学研究科有機・高分子化学専攻の 野呂 篤史講師らの研究グループは、日本ゼオンと共同…

反応化学の活躍できる場を広げたい!【ケムステ×Hey!Labo 糖化学ノックインインタビュー②】

2021年度科学研究費助成事業 学術変革領域研究(B)に採択された『糖鎖ケミカルノックインが拓く膜動…

UiO-66: 堅牢なジルコニウムクラスターの面心立方格子

UiO-66 は六核ジルコニウムオキシクラスターを SBU に持ち、高い熱安定性 · 化学安定性を示…

危ない試薬・面倒な試薬の便利な代替品

実験室レベルでは、未だに危険な試薬を扱わざるを得ない場合も多いかと思います。tert…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP