[スポンサーリンク]

化学者のつぶやき

アルケンのエナンチオ選択的ヒドロアリール化反応

[スポンサーリンク]

パラジウム触媒を用いたアルケンの還元的Heck型ヒドロアリール化反応が開発された。容易に着脱可能なキラル配向基を用いることでエナンチオ選択的に反応が進行する。

アルケンのヒドロアリール化反応

パラジウム触媒存在下、芳香族ハロゲン化物とアルケンをつなげるMizoroki–Heck反応は、芳香族ハロゲン化物がパラジウムに酸化的付加、続くアルケン配位挿入することで中間体1を与える。その後、β-水素脱離により芳香族アルケニル化合物2を生成する。b-水素脱離が進行せず、適切な水素源によりパラジウムの還元的脱離が進行すればヒドロアリール化体3となる(図1A)。この「(還元的Heck型)ヒドロアリール化反応」はこれまでにも報告があったが、2018年Engleらは一般的なアルケンに適用できる反応条件を発見した(図1B)[1]。しかし、エナンチオ選択的な同ヒドロアリール化反応は報告がなかった。
今回スクリプス研究所のEngle助教授らは、パラジウム触媒を用いたアルケニルベンズアルデヒドの還元的Heck型不斉ヒドロアリール化反応を開発した(図1C)。触媒量のキラルアミノ酸L1が系中で容易に着脱可能なキラル配向基(キラルTDGとして働き、エナンチオ選択的に反応が進行する。

図1. (A) Mizoroki–Heck反応と還元的Heck型ヒドロアリール化 (B)還元的Heck型ヒドロアリール化 (C) 不斉還元的Heck型ヒドロアリール化

 

“A Transient-Directing-Group Strategy Enables Enantioselective Reductive Heck Hydroarylation of Alkenes”

Oxtoby, L. J.; Li, Z. -Q.; Tran, V. T.; Erbay, T. G.; Deng, R.; Liu, P.; Engle, K. M.

Angew. Chem., Int. Ed. 2020, 59, 8885–8890.

DOI: 10.1002/anie.202001069

 

アルケンヒドロ官能基化における着脱可能なキラル配向基(キラルTDG

配向基(directing group : DG)は金属に配位し、基質と金属を近づけることで、反応性や位置選択性を獲得できる。

アルケンのヒドロアリール化においても8-アミノキノリン(AQ)部位を配向基として用いることで、収率の向上や位置選択的に進行する例がある(図2A)[2]。しかし、DGの導入/除去に追加の工程が必要という課題がある。

系中で可逆的に導入/除去可能な、着脱可能な配向基(transient directing group : TDG)であれば、それらの課題を解決できる。例えば、アミノピコリンL2をTDGとして用いた、アルケンのヒドロアシル化がある (図2B)[3]。TDGはアルデヒドなどの官能基と一時的に反応するため、アルケン官能基化におけるTDGの利用はそれら自身の官能基の付加反応に限られていた。さらに、キラルTDGの活用例は数例に留まる。現在までにアミノインダンをTDGとした分子内アルケン環化[4a]、キラルホスフィナートL3をTDGとしたヒドロホルミル化が報告されている(図2C)[4b]

図2 (A) DGを用いたアルケン官能基化 (B) TDGを用いたアルケン官能基化 (C) キラルTDGを用いたアルケン官能基化

 

論文著者の紹介


研究者:Keary M. Engle
研究者の経歴:
2003-2007 B.S. in chemistry, Economics, Mathematics, and Statistics University of Michigan, USA (Prof. Adam J. Matzger)
2008-2013 Ph.D. in Chemistry, The Scripps Research Institute, USA (Pro. Jin-Quan Yu)
2008-2013 D. Phil. in Biochemistry, University of Oxford, UK (Prof. Veronique Gouverneur and John M. Brown)
2013-2015 NIH Postdoctoral Fellow, California Institute of Technology, USA (Prof. Robert H. Grubbs)
2015– Assistant Professor of Chemistry, The Scripps Research Institute, USA
研究内容:触媒を用いたアルケンの位置選択的官能基化反応の開発

論文の概要

本反応はパラジウム触媒存在下、TDGとしてL1、水素源としてテトラメチルアミンギ酸塩、トリエチルアミンを添加し、アルケニルベンズアルデヒドとヨードアレーンを反応させることで目的のヒドロアリール化体3を与える。反応機構は二重触媒サイクルが推定されている(図2A)。(I) アルデヒドとTDGであるL1によるイミン形成、 続くパラジウムがTDG部位に配位 (II) ヨードアレーンがパラジウムに酸化的付加 (III) アルケンの配位挿入(エナンチオ選択性の発現) (IV) プロトン源であるギ酸塩がパラジウムに配位 (V) 脱炭酸を経てPd–H種を形成 (VI) 還元的脱離、続くTDGの解離によるヒドロアリール化体3の生成である。なお、(III)はDFT計算により、パラダサイクル中間体4からのカルボパラジウム化により、S体生成物3を与えることが支持された (詳細は論文およびSI参照)。
本反応の基質適用範囲は広く、電子供与基および電子求引基を有するヨードアレーン(3a and 3b)やベンズアルデヒド(3c and 3d)を用いても、中程度から高収率、高エナンチオ選択的に対応する3を与えた(図2B)。アルケンに種々の置換基を有する1を用いても反応は進行するものの、Z-アルケンではエナンチオ選択性の低下が、E-アルケン(3e and 3f)では収率の低下が生じることがわかった。

図2 (A) 推定反応機構 (B) 基質適用範囲

以上、パラジウム触媒存在下、アルケンの還元的Heck型不斉ヒドロアリール化反応が開発された。パラジウム触媒存在下キラルTDGを用いたアルケン官能基化として初めての例である。今後、TDGを用いたアルケンの二官能基化など、より複雑な骨格構築が可能になることが期待される。

参考文献

  1. Gurak, J. A. Jr.; Engle, K. M. Practical Intermolecular Hydroarylation of Diverse Alkenes via Reductive Heck Coupling. ACS Catal. 2018, 8, 8987–8992. DOI: 1021/acscatal.8b02717
  2. Wang, C.; Xiao, G.; Guo, T.; Ding, Y.; Wu, X.; Loh, T.-P. Palladium-Catalyzed Regiocontrollable Reductive Heck Reaction of Unactivated Aliphatic Alkenes. J. Am. Chem. Soc. 2018, 140, 9332–9336. DOI: 10.1021/jacs.8b03619
  3. Vautravers, N. R.; Regent, D. D.; Breit, B. Inter- and Intramolecular Hydroacylation of Alkenes Employing a Bifunctional Catalyst System. Chem. Commun. 2011, 47, 6635–6637. DOI: 10.1039/c1cc10683j
  4. (a) Watzke, A.; Wilson, R. M.; Malley, S. J. O’.; Bergman, R. G.; Ellman, J. A. Asymmetric Intramolecular Alkylation of Chiral Aromatic Imines via Catalytic C–H Bond Activation. Synlett 2007, 2383–2389. DOI: 1055/s-2007-985593 (b) Worthy, A. D.; Joe, C. L.; Lightburn, T. E.; Tan, K. L. Application of a Chiral Scaffolding Ligand in Catalytic Enantioselective Hydroformylation. J. Am. Chem. Soc. 2010, 132, 14757–14759. DOI: 10.1021/ja107433h
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 歯車クラッチを光と熱で制御する分子マシン
  2. ロタキサンを用いた機械的刺激に応答する効率的な分子放出
  3. 分子間エネルギー移動を利用して、希土類錯体の発光をコントロール!…
  4. フローケミストリーーChemical Times特集より
  5. Carl Boschの人生 その2
  6. 蛍光と光増感能がコントロールできる有機ビスマス化合物
  7. アレクセイ・チチバビン ~もうひとりのロシア有機化学の父~
  8. 知の市場:無料公開講座参加者募集のご案内

注目情報

ピックアップ記事

  1. ホットキーでクールにChemDrawを使いこなそう!
  2. 研究活動の御用達!PDF加工のためのクラウドサービス
  3. 安定な環状ケトンのC–C結合を組み替える
  4. Google Scholarにプロフィールを登録しよう!
  5. 【追悼企画】化学と生物で活躍できる化学者ーCarlos Barbas教授
  6. The Art of Problem Solving in Organic Chemistry
  7. 香りの化学1
  8. ワッカー酸化 Wacker oxidation
  9. 日本化学会第86春季年会(2006)
  10. 『主鎖むき出し』の芳香族ポリマーの合成に成功 ~長年の難溶性問題を解決~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年8月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

【産総研・触媒化学研究部門】新卒・既卒採用情報

触媒部門では、「個の力」でもある触媒化学を基盤としつつも、異分野に積極的に関わる…

触媒化学を基盤に展開される広範な研究

前回の記事でご紹介したとおり、触媒化学研究部門(触媒部門)では、触媒化学を基盤に…

「産総研・触媒化学研究部門」ってどんな研究所?

触媒化学融合研究センターの後継として、2025年に産総研内に設立された触媒化学研究部門は、「触媒化学…

Cell Press “Chem” 編集者 × 研究者トークセッション ~日本発のハイクオリティな化学研究を世界に~

ケムステでも以前取り上げた、Cell PressのChem。今回はChemの編集…

光励起で芳香族性を獲得する分子の構造ダイナミクスを解明!

第 654 回のスポットライトリサーチは、分子科学研究所 協奏分子システム研究セ…

藤多哲朗 Tetsuro Fujita

藤多 哲朗(ふじた てつろう、1931年1月4日 - 2017年1月1日)は日本の薬学者・天然物化学…

MI conference 2025開催のお知らせ

開催概要昨年エントリー1,400名超!MIに特化したカンファレンスを今年も開催近年、研究開発…

【ユシロ】新卒採用情報(2026卒)

ユシロは、創業以来80年間、“油”で「ものづくり」と「人々の暮らし」を支え続けている化学メーカーです…

Host-Guest相互作用を利用した世界初の自己修復材料”WIZARDシリーズ”

昨今、脱炭素社会への実現に向け、石油原料を主に使用している樹脂に対し、メンテナンス性の軽減や材料の長…

有機合成化学協会誌2025年4月号:リングサイズ発散・プベルル酸・イナミド・第5族遷移金属アルキリデン錯体・強発光性白金錯体

有機合成化学協会が発行する有機合成化学協会誌、2025年4月号がオンラインで公開されています!…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP