[スポンサーリンク]

化学者のつぶやき

アルケンのエナンチオ選択的ヒドロアリール化反応

[スポンサーリンク]

パラジウム触媒を用いたアルケンの還元的Heck型ヒドロアリール化反応が開発された。容易に着脱可能なキラル配向基を用いることでエナンチオ選択的に反応が進行する。

アルケンのヒドロアリール化反応

パラジウム触媒存在下、芳香族ハロゲン化物とアルケンをつなげるMizoroki–Heck反応は、芳香族ハロゲン化物がパラジウムに酸化的付加、続くアルケン配位挿入することで中間体1を与える。その後、β-水素脱離により芳香族アルケニル化合物2を生成する。b-水素脱離が進行せず、適切な水素源によりパラジウムの還元的脱離が進行すればヒドロアリール化体3となる(図1A)。この「(還元的Heck型)ヒドロアリール化反応」はこれまでにも報告があったが、2018年Engleらは一般的なアルケンに適用できる反応条件を発見した(図1B)[1]。しかし、エナンチオ選択的な同ヒドロアリール化反応は報告がなかった。
今回スクリプス研究所のEngle助教授らは、パラジウム触媒を用いたアルケニルベンズアルデヒドの還元的Heck型不斉ヒドロアリール化反応を開発した(図1C)。触媒量のキラルアミノ酸L1が系中で容易に着脱可能なキラル配向基(キラルTDGとして働き、エナンチオ選択的に反応が進行する。

図1. (A) Mizoroki–Heck反応と還元的Heck型ヒドロアリール化 (B)還元的Heck型ヒドロアリール化 (C) 不斉還元的Heck型ヒドロアリール化

 

“A Transient-Directing-Group Strategy Enables Enantioselective Reductive Heck Hydroarylation of Alkenes”

Oxtoby, L. J.; Li, Z. -Q.; Tran, V. T.; Erbay, T. G.; Deng, R.; Liu, P.; Engle, K. M.

Angew. Chem., Int. Ed. 2020, 59, 8885–8890.

DOI: 10.1002/anie.202001069

 

アルケンヒドロ官能基化における着脱可能なキラル配向基(キラルTDG

配向基(directing group : DG)は金属に配位し、基質と金属を近づけることで、反応性や位置選択性を獲得できる。

アルケンのヒドロアリール化においても8-アミノキノリン(AQ)部位を配向基として用いることで、収率の向上や位置選択的に進行する例がある(図2A)[2]。しかし、DGの導入/除去に追加の工程が必要という課題がある。

系中で可逆的に導入/除去可能な、着脱可能な配向基(transient directing group : TDG)であれば、それらの課題を解決できる。例えば、アミノピコリンL2をTDGとして用いた、アルケンのヒドロアシル化がある (図2B)[3]。TDGはアルデヒドなどの官能基と一時的に反応するため、アルケン官能基化におけるTDGの利用はそれら自身の官能基の付加反応に限られていた。さらに、キラルTDGの活用例は数例に留まる。現在までにアミノインダンをTDGとした分子内アルケン環化[4a]、キラルホスフィナートL3をTDGとしたヒドロホルミル化が報告されている(図2C)[4b]

図2 (A) DGを用いたアルケン官能基化 (B) TDGを用いたアルケン官能基化 (C) キラルTDGを用いたアルケン官能基化

 

論文著者の紹介


研究者:Keary M. Engle
研究者の経歴:
2003-2007 B.S. in chemistry, Economics, Mathematics, and Statistics University of Michigan, USA (Prof. Adam J. Matzger)
2008-2013 Ph.D. in Chemistry, The Scripps Research Institute, USA (Pro. Jin-Quan Yu)
2008-2013 D. Phil. in Biochemistry, University of Oxford, UK (Prof. Veronique Gouverneur and John M. Brown)
2013-2015 NIH Postdoctoral Fellow, California Institute of Technology, USA (Prof. Robert H. Grubbs)
2015– Assistant Professor of Chemistry, The Scripps Research Institute, USA
研究内容:触媒を用いたアルケンの位置選択的官能基化反応の開発

論文の概要

本反応はパラジウム触媒存在下、TDGとしてL1、水素源としてテトラメチルアミンギ酸塩、トリエチルアミンを添加し、アルケニルベンズアルデヒドとヨードアレーンを反応させることで目的のヒドロアリール化体3を与える。反応機構は二重触媒サイクルが推定されている(図2A)。(I) アルデヒドとTDGであるL1によるイミン形成、 続くパラジウムがTDG部位に配位 (II) ヨードアレーンがパラジウムに酸化的付加 (III) アルケンの配位挿入(エナンチオ選択性の発現) (IV) プロトン源であるギ酸塩がパラジウムに配位 (V) 脱炭酸を経てPd–H種を形成 (VI) 還元的脱離、続くTDGの解離によるヒドロアリール化体3の生成である。なお、(III)はDFT計算により、パラダサイクル中間体4からのカルボパラジウム化により、S体生成物3を与えることが支持された (詳細は論文およびSI参照)。
本反応の基質適用範囲は広く、電子供与基および電子求引基を有するヨードアレーン(3a and 3b)やベンズアルデヒド(3c and 3d)を用いても、中程度から高収率、高エナンチオ選択的に対応する3を与えた(図2B)。アルケンに種々の置換基を有する1を用いても反応は進行するものの、Z-アルケンではエナンチオ選択性の低下が、E-アルケン(3e and 3f)では収率の低下が生じることがわかった。

図2 (A) 推定反応機構 (B) 基質適用範囲

以上、パラジウム触媒存在下、アルケンの還元的Heck型不斉ヒドロアリール化反応が開発された。パラジウム触媒存在下キラルTDGを用いたアルケン官能基化として初めての例である。今後、TDGを用いたアルケンの二官能基化など、より複雑な骨格構築が可能になることが期待される。

参考文献

  1. Gurak, J. A. Jr.; Engle, K. M. Practical Intermolecular Hydroarylation of Diverse Alkenes via Reductive Heck Coupling. ACS Catal. 2018, 8, 8987–8992. DOI: 1021/acscatal.8b02717
  2. Wang, C.; Xiao, G.; Guo, T.; Ding, Y.; Wu, X.; Loh, T.-P. Palladium-Catalyzed Regiocontrollable Reductive Heck Reaction of Unactivated Aliphatic Alkenes. J. Am. Chem. Soc. 2018, 140, 9332–9336. DOI: 10.1021/jacs.8b03619
  3. Vautravers, N. R.; Regent, D. D.; Breit, B. Inter- and Intramolecular Hydroacylation of Alkenes Employing a Bifunctional Catalyst System. Chem. Commun. 2011, 47, 6635–6637. DOI: 10.1039/c1cc10683j
  4. (a) Watzke, A.; Wilson, R. M.; Malley, S. J. O’.; Bergman, R. G.; Ellman, J. A. Asymmetric Intramolecular Alkylation of Chiral Aromatic Imines via Catalytic C–H Bond Activation. Synlett 2007, 2383–2389. DOI: 1055/s-2007-985593 (b) Worthy, A. D.; Joe, C. L.; Lightburn, T. E.; Tan, K. L. Application of a Chiral Scaffolding Ligand in Catalytic Enantioselective Hydroformylation. J. Am. Chem. Soc. 2010, 132, 14757–14759. DOI: 10.1021/ja107433h
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. キシリトールのはなし
  2. TEtraQuinoline (TEQ)
  3. 博士課程学生の経済事情
  4. 「不斉有機触媒の未踏課題に挑戦する」—マックス・プランク石炭化学…
  5. 第35回ケムステVシンポ「有機合成が拓く最先端糖化学」を開催しま…
  6. Nature Reviews Chemistry創刊!
  7. 第2回「Matlantis User Conference」
  8. 研究者よ景色を描け!

注目情報

ピックアップ記事

  1. アニオンUV硬化に有用な光塩基発生剤(PBG)
  2. マイクロ波を用いた革新的製造プロセスと電材領域への事業展開 (ナノ粒子合成、フィルム表面処理/乾燥/接着/剥離、ポリマー乾燥/焼成など)
  3. やまと根岸通り
  4. ポリメラーゼ連鎖反応 polymerase chain reaction(PCR)
  5. ウィッティヒ反応 Wittig Reaction
  6. Excelでできる材料開発のためのデータ解析[超入門]-統計の基礎や機械学習との違いを解説-
  7. スタチンのふるさとを訪ねて
  8. 山本 尚 Hisashi Yamamoto
  9. π電子系イオンペアの精密合成と集合体の機能開拓
  10. ウーロン茶に新薬開発の夢 県立大グループが新成分発見

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年8月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP