[スポンサーリンク]

化学者のつぶやき

結合をアリーヴェデルチ! Agarozizanol Bの全合成

[スポンサーリンク]

セスキテルペンAgarozizanol Bの全合成が初めて達成された。光照射下で進行するカスケード反応とシクロプロパン環の開裂による構築困難なprezizaane骨格の短工程形成が本合成の特徴である。

Prezizaane骨格の短工程形成

セスキテルペン類にみられるprezizaane骨格は、六員環と2つの五員環からなる三環性構造(トリシクロウンデカン骨格)および4つの炭化水素基からなる。prezizaane骨格を有する天然物として、(+)-prezizaene(1)やprezizanol(2)、(+)-jinkohol II(3)がある(Figure 1A)。1990年にVettelとCoatesらによって12が合成されて以来、複数のグループによって13の合成が達成されてきた[1–3]。本骨格形成の鍵は、如何にして四級炭素(C1)と架橋炭素(C9 and C10)を構築するかである。その骨格形成は難しく、1-3の全合成はいずれの場合も15工程以上を要する。また、13よりも酸化段階が高いprezizaane骨格を有する(+)-agarozizanol B(4)の全合成は未だ報告例がない。
本論文著者であるBachらは、より簡便なprezizaane骨格構築法を用いた4の合成を目指した。彼らは、自身のグループが開発した光誘導型カスケード反応に着目した[4]。本反応では、光照射下で1-インダノン誘導体5の環化付加反応が進行し、シクロプロパンを含む五環性ケトン6を与える。得られた6に臭素を作用させると、オレフィンの臭素付加に続いてシクロプロパンが開環し、トリシクロウンデカン骨格を有する8を与える(Figure 1B)。今回彼らは本手法を応用した4の逆合成解析を考えた(Figure 1C)。49の脱酸素化とアセタールの酸加水分解により得られる。9のprezizaane骨格は、シクロプロパン10の結合開裂により形成される。1011の光誘導型カスケード反応により誘導する。11は、1213のSN2反応により得られる。本合成の課題は、三置換オレフィンを有する11の光誘導型カスケード反応とシクロプロパン10の結合開裂を効率よく進行させることである。

図 1. A. prezizaane骨格を有する化合物 B. Bachらによる光誘導型カスケード反応 C. (+)-agarozizanol Bの逆合成解析

“Concise Total Synthesis of Agarozizanol B via a Strained Photocascade Intermediate”
Rauscher, N.; Næsborg, L.; Jandl, C.; Bach, T. Angew. Chem., Int. Ed.2021, 60, 24039-24042.
DOI: 10.1002/anie.202110009

論文著者の紹介


研究者:Thorsten Bach 
研究者の経歴:
1987–1988                  M.S., University of Southern California, USA (Prof. G. A. Olah)
1989–1991                  Ph.D., Philipps University Marburg, Germany (Prof. M. T. Reetz)
1991–1992                  Postdoc, Harvard University, USA (Prof. D. A. Evans)
1992–1996                  Independent Researcher, Münster University, Germany
1997–2000                  Professor, Philipps University Marburg, Germany
2000–                             Professor, Technical University of Munich, Germany
研究内容:天然物合成、C–H活性化を伴うクロスカップリング反応の開発、光反応を用いた複雑骨格構築法の開発

論文の概要

はじめに著者らは1213のSN2反応により光反応前駆体11を調製した。得られた11の光誘導型カスケード反応はシクロプロパン10を収率よく与えた(62%, dr = 2:1)。メタノール中、11に350 nmの紫外光を照射すると、オルト-光環化付加が進行し中間体14を与える。シクロブタン14の逆旋的開環反応によりシクロオクタトリエン15となり、15の逆旋的[4p]環化反応により16が生成する。続いて1,3-ビラジカル16’を経由した16のジ-p-メタン転位が進行することで、課題であった四級炭素C1と高度な縮環構造を有する1011から一工程で得られた。10の不要なジアステレオマーを分離し、次なる課題であるシクロプロパンの開裂反応を試みた。10に水素雰囲気下金属触媒を作用させたところ、オレフィンの還元とともに、望まぬ結合(C1–C5)でシクロプロパンの開環が進行し、18が生成した。そこで、1)ケトンの還元2)オレフィンの還元3)アルコールの酸化後にシクロプロパンを開環する段階的手法を試みた。ケトン10にオキサザボロリジン17を作用させたところ(Corey–Bakshi–Shibata還元)、速度論的光学分割が起こり、高エナンチオ過剰率でアルコール19を得ることができた。続く、19のオレフィンの水素化、アルコールの酸化によりケトン20へと誘導した。20に対し、クロロトリメチルシランとヨウ化ナトリウムを作用させると、望みの結合でシクロプロパンの開環が進行し、prezizaane骨格をもつ22が得られた。22のC–I結合開裂、ケトンの還元により得られたアルコールをキサンテート23とした。最後に23のBarton-McCombie脱酸素化により24としたのち、アセタールの酸加水分解により(+)-agarozizanol B(4)を得た。

図2. (+)-agarozizanol Bの合成経路

以上、光誘導型カスケード反応とシクロプロパン環の結合開裂を鍵反応とした (+)-agarozizanol Bの不斉全合成がわずか11工程で達成された。
スティッキーフィンガーズの突破力には及ばないが、光化学を用いれば天然物合成における困難もくぐり抜けられると感じた。

参考文献

  1. Vettel, P. R.; Coates, R. M. Total Synthesis of (–)-Prezizaene and (–)-Prezizanol. J. Org. Chem. 1980, 45, 5430–5432. DOI: 10.1021/jo01314a062
  2. Piers, E.; Jean, M.; Marrs, P. S. Synthesis of Vinylcyclopropanes via Palladium-Catalyzed Coupling of Cycloprpylzinc Halides with Vinyl Iodides. Tetrahedron Lett. 1987, 28, 5075–5078. DOI: 1016/S0040-4039(00)95593-X
  3. Sakurai, K.; Kitahara, T.; Mori, K. Stereocontrolled Synthesis of (–)-Prezizanol, (–)-Prezizaene, Their Epimers and (–)-Allokhusiol. Tetrahedron 1990, 46, 761–774. DOI: 1016/S0040-4020(01)81359-4
  4. Næsborg, L.; Jandl, C.; Zech, A.; Bach, T. Complex Carbocyclic Skeletons from Aryl Ketones through a Three- Photon Cascade Reaction. Angew. Chem., Int. Ed. 2020, 59, 5656. DOI: 10.1002/anie.201915731

ケムステ関連記事

山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. NIMSの「新しいウェブサイト」が熱い!
  2. ニセ試薬のサプライチェーン
  3. 地方の光る化学商社~長瀬産業殿~
  4. 元素名と中国語
  5. 鉄触媒を使い分けて二重結合の位置を自由に動かそう
  6. 光照射による有機酸/塩基の発生法:①光酸発生剤について
  7. 第16回ケムステVシンポ「マテリアルズインフォマティクス?なにそ…
  8. 産官学の深耕ー社会への発信+若い力への後押しー第1回CSJ化学フ…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 導電性ゲル Conducting Gels: 流れない流体に電気を流すお話
  2. 池袋PARCOで「におい展」開催
  3. 第十二回ケムステVシンポ「水・有機材料・無機材料の最先端相転移現象 」
  4. セルロースナノファイバーの真価【オンライン講座】
  5. 大環状ヘテロ環の合成から抗がん剤開発へ
  6. 学術変革領域研究(A) 「デジタル有機合成」発足とキックオフシンポジウムのお知らせ
  7. Dead Endを回避せよ!「全合成・極限からの一手」②
  8. 田辺製薬と三菱ウェルファーマが10月1日に合併へ‐新社名は「田辺三菱製薬」
  9. ミニスキ反応 Minisci Reaction
  10. 「消えるタトゥー」でヘンなカユミ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年1月
« 12月   2月 »
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

注目情報

最新記事

【速報】HGS 分子構造模型「 立体化学 学生用セット」販売再開!

いまから約7年前の2015年10月。分子を愛する学生・研究者に悲報が届けられた。…

次世代型合金触媒の電解水素化メカニズムを解明!アルキンからアルケンへの選択的水素化法

第383回のスポットライトリサーチは、横浜国立大学大学院 理工学府 修士2年(研究当時)の野上 周嗣…

LG化学より発表されたプラスチックに関する研究成果

LG Chem develops advanced plastic materials …

経験の浅い医療系技術者でも希望にかなう転職を実現。 専門性の高い職種にこそ求められる「ビジョンマッチング」

「人財躍動化」をビジョンに掲げるAdecco Group Japanの人財紹介事業ブランドSprin…

創薬における中分子

ここ10年の間で、低分子・高分子の間の化合物の分類として 中分子 という言葉が台頭し…

ポンコツ博士の海外奮闘録⑦〜博士,鍵反応を仕込む〜

ポンコツシリーズ一覧国内編:1話・2話・3話国内外伝:1話・2話・留学TiPs海外編:1…

強酸を用いた従来法を塗り替える!アルケンのヒドロアルコキシ化反応の開発

第 382回のスポットライトリサーチは、金沢大学大学院 医薬保健総合研究科 創薬科学…

ドラえもん探究ワールド 身近にいっぱい!おどろきの化学

概要「化学」への興味の芽を育むマンガ+解説書 子ども(大人も)の毎日は、「化学」とのお付き合…

データ駆動型R&D組織の実現に向けた、MIを組織的に定着させる3ステップ

開催日:2022/05/25 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

薬剤師国家試験にチャレンジ!【有機化学編その1】

2022.5.21 追記: 問3の構造式を再度訂正しました。2022.5.2…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP