[スポンサーリンク]

化学者のつぶやき

結合をアリーヴェデルチ! Agarozizanol Bの全合成

[スポンサーリンク]

セスキテルペンAgarozizanol Bの全合成が初めて達成された。光照射下で進行するカスケード反応とシクロプロパン環の開裂による構築困難なprezizaane骨格の短工程形成が本合成の特徴である。

Prezizaane骨格の短工程形成

セスキテルペン類にみられるprezizaane骨格は、六員環と2つの五員環からなる三環性構造(トリシクロウンデカン骨格)および4つの炭化水素基からなる。prezizaane骨格を有する天然物として、(+)-prezizaene(1)やprezizanol(2)、(+)-jinkohol II(3)がある(Figure 1A)。1990年にVettelとCoatesらによって12が合成されて以来、複数のグループによって13の合成が達成されてきた[1–3]。本骨格形成の鍵は、如何にして四級炭素(C1)と架橋炭素(C9 and C10)を構築するかである。その骨格形成は難しく、1-3の全合成はいずれの場合も15工程以上を要する。また、13よりも酸化段階が高いprezizaane骨格を有する(+)-agarozizanol B(4)の全合成は未だ報告例がない。
本論文著者であるBachらは、より簡便なprezizaane骨格構築法を用いた4の合成を目指した。彼らは、自身のグループが開発した光誘導型カスケード反応に着目した[4]。本反応では、光照射下で1-インダノン誘導体5の環化付加反応が進行し、シクロプロパンを含む五環性ケトン6を与える。得られた6に臭素を作用させると、オレフィンの臭素付加に続いてシクロプロパンが開環し、トリシクロウンデカン骨格を有する8を与える(Figure 1B)。今回彼らは本手法を応用した4の逆合成解析を考えた(Figure 1C)。49の脱酸素化とアセタールの酸加水分解により得られる。9のprezizaane骨格は、シクロプロパン10の結合開裂により形成される。1011の光誘導型カスケード反応により誘導する。11は、1213のSN2反応により得られる。本合成の課題は、三置換オレフィンを有する11の光誘導型カスケード反応とシクロプロパン10の結合開裂を効率よく進行させることである。

図 1. A. prezizaane骨格を有する化合物 B. Bachらによる光誘導型カスケード反応 C. (+)-agarozizanol Bの逆合成解析

“Concise Total Synthesis of Agarozizanol B via a Strained Photocascade Intermediate”
Rauscher, N.; Næsborg, L.; Jandl, C.; Bach, T. Angew. Chem., Int. Ed.2021, 60, 24039-24042.
DOI: 10.1002/anie.202110009

論文著者の紹介


研究者:Thorsten Bach 
研究者の経歴:
1987–1988                  M.S., University of Southern California, USA (Prof. G. A. Olah)
1989–1991                  Ph.D., Philipps University Marburg, Germany (Prof. M. T. Reetz)
1991–1992                  Postdoc, Harvard University, USA (Prof. D. A. Evans)
1992–1996                  Independent Researcher, Münster University, Germany
1997–2000                  Professor, Philipps University Marburg, Germany
2000–                             Professor, Technical University of Munich, Germany
研究内容:天然物合成、C–H活性化を伴うクロスカップリング反応の開発、光反応を用いた複雑骨格構築法の開発

論文の概要

はじめに著者らは1213のSN2反応により光反応前駆体11を調製した。得られた11の光誘導型カスケード反応はシクロプロパン10を収率よく与えた(62%, dr = 2:1)。メタノール中、11に350 nmの紫外光を照射すると、オルト-光環化付加が進行し中間体14を与える。シクロブタン14の逆旋的開環反応によりシクロオクタトリエン15となり、15の逆旋的[4p]環化反応により16が生成する。続いて1,3-ビラジカル16’を経由した16のジ-p-メタン転位が進行することで、課題であった四級炭素C1と高度な縮環構造を有する1011から一工程で得られた。10の不要なジアステレオマーを分離し、次なる課題であるシクロプロパンの開裂反応を試みた。10に水素雰囲気下金属触媒を作用させたところ、オレフィンの還元とともに、望まぬ結合(C1–C5)でシクロプロパンの開環が進行し、18が生成した。そこで、1)ケトンの還元2)オレフィンの還元3)アルコールの酸化後にシクロプロパンを開環する段階的手法を試みた。ケトン10にオキサザボロリジン17を作用させたところ(Corey–Bakshi–Shibata還元)、速度論的光学分割が起こり、高エナンチオ過剰率でアルコール19を得ることができた。続く、19のオレフィンの水素化、アルコールの酸化によりケトン20へと誘導した。20に対し、クロロトリメチルシランとヨウ化ナトリウムを作用させると、望みの結合でシクロプロパンの開環が進行し、prezizaane骨格をもつ22が得られた。22のC–I結合開裂、ケトンの還元により得られたアルコールをキサンテート23とした。最後に23のBarton-McCombie脱酸素化により24としたのち、アセタールの酸加水分解により(+)-agarozizanol B(4)を得た。

図2. (+)-agarozizanol Bの合成経路

以上、光誘導型カスケード反応とシクロプロパン環の結合開裂を鍵反応とした (+)-agarozizanol Bの不斉全合成がわずか11工程で達成された。
スティッキーフィンガーズの突破力には及ばないが、光化学を用いれば天然物合成における困難もくぐり抜けられると感じた。

参考文献

  1. Vettel, P. R.; Coates, R. M. Total Synthesis of (–)-Prezizaene and (–)-Prezizanol. J. Org. Chem. 1980, 45, 5430–5432. DOI: 10.1021/jo01314a062
  2. Piers, E.; Jean, M.; Marrs, P. S. Synthesis of Vinylcyclopropanes via Palladium-Catalyzed Coupling of Cycloprpylzinc Halides with Vinyl Iodides. Tetrahedron Lett. 1987, 28, 5075–5078. DOI: 1016/S0040-4039(00)95593-X
  3. Sakurai, K.; Kitahara, T.; Mori, K. Stereocontrolled Synthesis of (–)-Prezizanol, (–)-Prezizaene, Their Epimers and (–)-Allokhusiol. Tetrahedron 1990, 46, 761–774. DOI: 1016/S0040-4020(01)81359-4
  4. Næsborg, L.; Jandl, C.; Zech, A.; Bach, T. Complex Carbocyclic Skeletons from Aryl Ketones through a Three- Photon Cascade Reaction. Angew. Chem., Int. Ed. 2020, 59, 5656. DOI: 10.1002/anie.201915731

ケムステ関連記事

Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 第23回次世代を担う有機化学シンポジウム
  2. 有機合成化学協会誌2019年12月号:サルコフィトノライド・アミ…
  3. iBooksで有機合成化学を学ぶ:The Portable Ch…
  4. 有機ナノチューブの新規合成法の開発
  5. 日本にあってアメリカにないガラス器具
  6. 2つ輪っかで何作ろう?
  7. メタルフリー C-H活性化~触媒的ホウ素化
  8. 2013年就活体験記(2)

注目情報

ピックアップ記事

  1. 4つの異なる配位結合を持つ不斉金属原子でキラル錯体を組み上げる!!
  2. 創薬におけるPAINSとしての三環性テトラヒドロキノリン類
  3. 熱がダメなら光当てれば?Lugdunomycinの全合成
  4. 溝呂木・ヘック反応 Mizoroki-Heck Reaction
  5. 化学実験系YouTuber
  6. 有機触媒 / Organocatalyst
  7. Pure science
  8. 村橋 俊一 Shun-Ichi Murahashi
  9. 大学院生のつぶやき:UCEEネット、ご存知ですか?
  10. 2009年度日本学士院賞、化学では竜田教授が受賞

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年1月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP