[スポンサーリンク]

化学者のつぶやき

結合をアリーヴェデルチ! Agarozizanol Bの全合成

[スポンサーリンク]

セスキテルペンAgarozizanol Bの全合成が初めて達成された。光照射下で進行するカスケード反応とシクロプロパン環の開裂による構築困難なprezizaane骨格の短工程形成が本合成の特徴である。

Prezizaane骨格の短工程形成

セスキテルペン類にみられるprezizaane骨格は、六員環と2つの五員環からなる三環性構造(トリシクロウンデカン骨格)および4つの炭化水素基からなる。prezizaane骨格を有する天然物として、(+)-prezizaene(1)やprezizanol(2)、(+)-jinkohol II(3)がある(Figure 1A)。1990年にVettelとCoatesらによって12が合成されて以来、複数のグループによって13の合成が達成されてきた[1–3]。本骨格形成の鍵は、如何にして四級炭素(C1)と架橋炭素(C9 and C10)を構築するかである。その骨格形成は難しく、1-3の全合成はいずれの場合も15工程以上を要する。また、13よりも酸化段階が高いprezizaane骨格を有する(+)-agarozizanol B(4)の全合成は未だ報告例がない。
本論文著者であるBachらは、より簡便なprezizaane骨格構築法を用いた4の合成を目指した。彼らは、自身のグループが開発した光誘導型カスケード反応に着目した[4]。本反応では、光照射下で1-インダノン誘導体5の環化付加反応が進行し、シクロプロパンを含む五環性ケトン6を与える。得られた6に臭素を作用させると、オレフィンの臭素付加に続いてシクロプロパンが開環し、トリシクロウンデカン骨格を有する8を与える(Figure 1B)。今回彼らは本手法を応用した4の逆合成解析を考えた(Figure 1C)。49の脱酸素化とアセタールの酸加水分解により得られる。9のprezizaane骨格は、シクロプロパン10の結合開裂により形成される。1011の光誘導型カスケード反応により誘導する。11は、1213のSN2反応により得られる。本合成の課題は、三置換オレフィンを有する11の光誘導型カスケード反応とシクロプロパン10の結合開裂を効率よく進行させることである。

図 1. A. prezizaane骨格を有する化合物 B. Bachらによる光誘導型カスケード反応 C. (+)-agarozizanol Bの逆合成解析

“Concise Total Synthesis of Agarozizanol B via a Strained Photocascade Intermediate”
Rauscher, N.; Næsborg, L.; Jandl, C.; Bach, T. Angew. Chem., Int. Ed.2021, 60, 24039-24042.
DOI: 10.1002/anie.202110009

論文著者の紹介


研究者:Thorsten Bach 
研究者の経歴:
1987–1988                  M.S., University of Southern California, USA (Prof. G. A. Olah)
1989–1991                  Ph.D., Philipps University Marburg, Germany (Prof. M. T. Reetz)
1991–1992                  Postdoc, Harvard University, USA (Prof. D. A. Evans)
1992–1996                  Independent Researcher, Münster University, Germany
1997–2000                  Professor, Philipps University Marburg, Germany
2000–                             Professor, Technical University of Munich, Germany
研究内容:天然物合成、C–H活性化を伴うクロスカップリング反応の開発、光反応を用いた複雑骨格構築法の開発

論文の概要

はじめに著者らは1213のSN2反応により光反応前駆体11を調製した。得られた11の光誘導型カスケード反応はシクロプロパン10を収率よく与えた(62%, dr = 2:1)。メタノール中、11に350 nmの紫外光を照射すると、オルト-光環化付加が進行し中間体14を与える。シクロブタン14の逆旋的開環反応によりシクロオクタトリエン15となり、15の逆旋的[4p]環化反応により16が生成する。続いて1,3-ビラジカル16’を経由した16のジ-p-メタン転位が進行することで、課題であった四級炭素C1と高度な縮環構造を有する1011から一工程で得られた。10の不要なジアステレオマーを分離し、次なる課題であるシクロプロパンの開裂反応を試みた。10に水素雰囲気下金属触媒を作用させたところ、オレフィンの還元とともに、望まぬ結合(C1–C5)でシクロプロパンの開環が進行し、18が生成した。そこで、1)ケトンの還元2)オレフィンの還元3)アルコールの酸化後にシクロプロパンを開環する段階的手法を試みた。ケトン10にオキサザボロリジン17を作用させたところ(Corey–Bakshi–Shibata還元)、速度論的光学分割が起こり、高エナンチオ過剰率でアルコール19を得ることができた。続く、19のオレフィンの水素化、アルコールの酸化によりケトン20へと誘導した。20に対し、クロロトリメチルシランとヨウ化ナトリウムを作用させると、望みの結合でシクロプロパンの開環が進行し、prezizaane骨格をもつ22が得られた。22のC–I結合開裂、ケトンの還元により得られたアルコールをキサンテート23とした。最後に23のBarton-McCombie脱酸素化により24としたのち、アセタールの酸加水分解により(+)-agarozizanol B(4)を得た。

図2. (+)-agarozizanol Bの合成経路

以上、光誘導型カスケード反応とシクロプロパン環の結合開裂を鍵反応とした (+)-agarozizanol Bの不斉全合成がわずか11工程で達成された。
スティッキーフィンガーズの突破力には及ばないが、光化学を用いれば天然物合成における困難もくぐり抜けられると感じた。

参考文献

  1. Vettel, P. R.; Coates, R. M. Total Synthesis of (–)-Prezizaene and (–)-Prezizanol. J. Org. Chem. 1980, 45, 5430–5432. DOI: 10.1021/jo01314a062
  2. Piers, E.; Jean, M.; Marrs, P. S. Synthesis of Vinylcyclopropanes via Palladium-Catalyzed Coupling of Cycloprpylzinc Halides with Vinyl Iodides. Tetrahedron Lett. 1987, 28, 5075–5078. DOI: 1016/S0040-4039(00)95593-X
  3. Sakurai, K.; Kitahara, T.; Mori, K. Stereocontrolled Synthesis of (–)-Prezizanol, (–)-Prezizaene, Their Epimers and (–)-Allokhusiol. Tetrahedron 1990, 46, 761–774. DOI: 1016/S0040-4020(01)81359-4
  4. Næsborg, L.; Jandl, C.; Zech, A.; Bach, T. Complex Carbocyclic Skeletons from Aryl Ketones through a Three- Photon Cascade Reaction. Angew. Chem., Int. Ed. 2020, 59, 5656. DOI: 10.1002/anie.201915731

ケムステ関連記事

Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. SFTSのはなし ~マダニとその最新情報 前編~
  2. イミニウム励起触媒系による炭素ラジカルの不斉1,4-付加
  3. ニトリル手袋は有機溶媒に弱い?
  4. とある社長の提言について ~日本合成ゴムとJSR~
  5. 化学系面白サイトでちょっと一息つきましょう
  6. 2007年度イグノーベル賞決定
  7. やっぱりリンが好き
  8. ポンコツ博士の海外奮闘録 〜ポスドク失職・海外オファー編〜

注目情報

ピックアップ記事

  1. 天然にある中間体から多様な医薬候補を創り出す
  2. mRNAワクチン(メッセンジャーRNAワクチン)
  3. BASF150年の歩みー特製ヒストリーブックプレゼント!
  4. 分子積み木による新規ゼオライト合成に成功、産総研
  5. 博士課程学生の経済事情
  6. 量子力学が予言した化学反応理論を実験で証明する
  7. 「ヨーロッパで修士号と博士号を取得する」 ―ETH Zürichより―
  8. エントロピーの悩みどころを整理してみる その1
  9. 地方の光る化学商社~長瀬産業殿~
  10. 理研:23日に一般公開、「実験ジャー」も登場--和光 /埼玉

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年1月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

河村奈緒子 Naoko Komura

河村 奈緒子(こうむら なおこ, 19xx年xx月xx日-)は、日本の有機化学者である。専門は糖鎖合…

分極したBe–Be結合で広がるベリリウムの化学

Be–Be結合をもつ安定な錯体であるジベリロセンの配位子交換により、分極したBe–Be結合形成を初め…

小松 徹 Tohru Komatsu

小松 徹(こまつ とおる、19xx年xx月xx日-)は、日本の化学者である。東京大学大学院薬学系研究…

化学CMアップデート

いろいろ忙しくてケムステからほぼ一年離れておりましたが、少しだけ復活しました。その復活第一弾は化学企…

固有のキラリティーを生むカリックス[4]アレーン合成法の開発

不斉有機触媒を利用した分子間反応により、カリックスアレーンを構築することが可能である。固有キラリ…

服部 倫弘 Tomohiro Hattori

服部 倫弘 (Tomohiro Hattori) は、日本の有機化学者。中部大学…

ぱたぱた組み替わるブルバレン誘導体を高度に置換する

容易に合成可能なビシクロノナン骨格を利用した、簡潔でエナンチオ選択的に多様な官能基をもつバルバラロン…

今年は Carl Bosch 生誕 150周年です

Tshozoです。タイトルの件、本国で特に大きなイベントはないようなのですが、筆者が書かずに誰が…

ペンタフルベンが環構築の立役者!Bipolarolide D の全合成

4つの五員環が連結するユニークな構造をもつ天然物bipolarolide Dの全合成を達成した。エナ…

植物由来アルカロイドライブラリーから新たな不斉有機触媒の発見

第632回のスポットライトリサーチは、千葉大学大学院医学薬学府(中分子化学研究室)博士課程後期3年の…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP