[スポンサーリンク]

M

光延反応 Mitsunobu Reaction

概要

第二級アルコールにアゾジカルボン酸ジエチル(DEAD)、トリフェニルホスフィン(Ph3P)、安息香酸を反応させると、立体反転(SN2経路)を伴って、対応するベンゾイルオキシ誘導体が生成する。続くアルカリ加水分解により、対応するアルコールに変換できる。すなわち、アルコールの立体反転法として用いられる。

穏和な条件で反応が進行するため、天然物・複雑化合物合成に頻用されている。しかしながら、目的物以外にも副産物が多く生成する為、TLCの検出作業および精製が困難になるケースも多い。

基本文献

  • Mitsunobu, O.; Yamada, M.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1967, 40, 935. doi:10.1246/bcsj.40.935
  • Mitsunobu, O.; Yamada, M. Bull. Chem. Soc. Jpn. 196740, 2380. doi:10.1246/bcsj.40.2380
  • Review: Mitsunobu, O. Synthesis 1981, 1.
  • Review: Hughes, D. L. Org. React. 199242, 335.
  • Review: Dandapani, S.; Curran, D. P. Chem. Eur. J. 200410, 3130. DOI: 10.1002/chem.200400363
  • Review: Dembinski, R. Eur. J. Org. Chem. 2004, 2763. DOI: 10.1002/ejoc.200400003
  • But,T. Y. S.; Toy, P. H. Chem. Asian. J. 20072, 1340. doi:10.1002/asia.200700182
  • Swamy, K. C. K.; Kumar, N. N. B.; Balaraman, E.; Kumar, K. V. P. P. Chem. Rev. 2009, 109, 2551. doi:10.1021/cr800278z
  • Fletcher, S. Org. Chem. Front. 2015, 2, 739. DOI: 10.1039/C5QO00016E

開発の歴史

光延旺洋

 

光延旺洋(みつのぶおうよう)により、1967年開発された。現在までに4500以上の本反応に関する文献が報告されている。

反応機構

アゾジカルボン酸ホスフィン付加体の塩基性が弱いため、求核剤には酸性プロトン(pKa<13)が必要とされる。単純にアルコールの反転目的で使用したい場合には、安息香酸よりも酸性度の高いp-ニトロ安息香酸を用いると収率が良い場合が多い。(参考:Chirality 2000, 12, 346)
ol-ol-004.gif

反応例

カルボン酸以外の求核剤も用いることができ、さまざまな化合物へと変換される。 以下に例をまとめておく(「有機反応を俯瞰する ーリンの化学 その 2 (光延型置換反応)」も参照) 。
mitsunobu_3.gif
大環状化合物合成にも適用可能であり、価値が高い。
mitsunobu_9.gif
角田試薬を用いる光延反応[1]:pKaが13より大きい弱酸においても光延反応を進行させることが可能。
mitsunobu_5.gif
PhI(OAc)2を再酸化剤にすれば、DEADを触媒量に減ずることが可能。[2]
mitsunobu_4.gif
Movassaghiらによって開発されたIPNBSH試薬を用いると、アルコールの脱酸素化が行える(Movassaghi脱酸素化)。
movassaghi_deoxi_1.gif

実験手順

混み合った位置にあるアルコールの立体反転[3] mitsunobu_8.gif

温度計、攪拌子を備えた250mL三径フラスコに(-)-メントール(3.00g, 19.2mmol)、4-ニトロ安息香酸(12.9g, 77.2mmol)、トリフェニルホスフィン(20.1g, 76.6mmol)、テトラヒドロフラン(150mL)を加える。溶液を氷冷し、ジエチルアゾジカルボキシレード(12.1mL, 77mmol)を、内温が10℃を超えないように注意しながら滴下していく。滴下終了後、氷浴を取り除き室温で一晩(14時間)攪拌し、引き続き40℃3時間攪拌する。室温に放冷し、ジエチルエーテル(150mL)で希釈、有機層を飽和重曹水(2×100mL)で洗浄する。水層を合わせてジエチルエーテル(100mL)で逆抽出する。有機層を合わせ、無水硫酸ナトリウムで乾燥する。溶媒と低沸点化合物をエバポレータ、真空ポンプ(0.2mmHg, 30℃, 3時間)で除去する。固体状物質をジエチルエーテル(40mL)に懸濁させ、一晩放置する。混合溶液を攪拌しながらヘキサン(20mL)をゆっくり加えると白色固体が生じるので、これを減圧ろ過し、50v/v%のジエチルエーテル/ヘキサンで洗浄する。ろ液をエバポレータで濃縮し、残渣の黄色油状物質をジクロロメタン(10mL)に溶解させ、8%ジエチルエーテル/ヘキサン(40mL)で希釈する。これをカラムクロマトグラフィ(展開系:8%ジエチルエーテル/ヘキサン)で精製することで目的物を白色結晶性固体として得る(5.03g, 収率85.6%)。

実験のコツ・テクニック

 

参考文献

  1. Tunoda, T. et al. Tetrahedron Lett. 199536, 2529.; ibid, 1996, 37, 2463. DOI: 10.1016/0040-4039(96)00318-8 ; 10.1016/0040-4039(96)00319-X
  2. But, T. Y. S.; Toy, P. H. J. Am. Chem. Soc. 2006128, 9636. DOI: 10.1021/ja063141v
  3. Dodge, J. A.; Nissen, J. S.; Presnell, M. Org. Synth. 1996, 73, 110. [PDF]

関連反応

関連書籍

 

関連リンク

The following two tabs change content below.
Hiro

Hiro

Hiro

最新記事 by Hiro (全て見る)

関連記事

  1. トリメチレンメタン付加環化 Trimethylenemethan…
  2. ハンチュ ピロール合成 Hantzsch Pyrrole Syn…
  3. ヒドロホルミル化反応 Hydroformylation
  4. マルコフニコフ則 Markovnikov’s Rul…
  5. ガブリエルアミン合成 Gabriel Amine Synthes…
  6. マクマリーカップリング McMurry Coupling
  7. ロゼムンド・リンドセー ポルフィリン合成 Rothemund-L…
  8. エルマンイミン Ellman’s Imine

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 米国版・歯痛の応急薬
  2. 前代未聞のねつ造論文 学会発表したデータを基に第三者が論文を発表
  3. エーザイ、医療用の処方を基にした去たん剤
  4. デレピン アミン合成 Delepine Amine Synthesis
  5. カプロラクタム (caprolactam)
  6. 旭化成ファインケム、新規キラルリガンド「CBHA」の工業化技術を確立し試薬を販売
  7. 品川硝子製造所跡(近代硝子工業発祥の碑)
  8. 人工軟骨への応用を目指した「ダブルネットワークゲル」
  9. ポケットにいれて持ち運べる高分子型水素キャリアの開発
  10. 化学に魅せられて

関連商品

注目情報

注目情報

最新記事

Carl Boschの人生 その2

Tshozoです。前回の続き、早速参ります。筆者のフォルダが火を噴く動画集 おそらく現存…

トヨタ、世界初「省ネオジム耐熱磁石」開発

トヨタは、今後急速な拡大が予想される電動車に搭載される高出力モーターなど様々なモーターに使用されるネ…

触媒のチカラで拓く位置選択的シクロプロパン合成

嵩高いコバルト錯体を触媒として用いた位置選択的Simmons–Smith型モノシクロプロパン化反応が…

「原子」が見えた! なんと一眼レフで撮影に成功

An Oxford University student who captured an image…

2018年3月2日:ケムステ主催「化学系学生対象 企業合同説明会」

2月も後半となり、3月1日の就活解禁に向けて、2019年卒業予定の学生のみなさんは、就活モードが本格…

高専シンポジウム in KOBE に参加しました –その 2: 牛の尿で発電!? 卵殻膜を用いた燃料電池–

1 月 27 日に開催された第 23 回 高専シンポジウム in KOBE の参加報告の後編です。前…

Chem-Station Twitter

PAGE TOP