[スポンサーリンク]

スポットライトリサーチ

医薬品有効成分の新しい結晶化経路を発見!

[スポンサーリンク]

第426回のスポットライトリサーチは、千葉大学大学院薬学研究院 製剤工学研究室(森部研究室)の陳 子喬(ちん しきょう)博士にお願いしました。

森部研究室では医薬品製剤を専門とし、製剤中の有効成分や添加剤の分子状態と製剤物性や有効性との関連性を明らかにすることで、より良い製剤設計指針の確立を目指しています。具体的には、固体NMRによる製剤評価技術の確立やナノ製剤の物性評価法の開発、薬物過飽和挙動の解明などの研究を行っています。本プレスリリースの研究成果は医薬品有効成分の結晶化についてで、有機化合物の結晶化メカニズムは、世界中で研究が盛んに⾏われていますが、その結晶化メカニズムは複雑であり、未だに包括的な理解には⾄っていません。これまでに本研究グループは、免疫抑制剤であるシクロスポリン A のナノ粒⼦懸濁液を 25°C で保存すると、シクロスポリン Aが⾮晶質(分⼦配列が不規則)から結晶(分⼦配列が規則的)に変化することを報告しています。そこで本研究では、この結晶化メカニズム解明を⽬的にナノ粒⼦の形態変化を経時的に観察することを行い、新しい結晶化経路を確認することに成功しました。

この研究成果は、「Nano Letters」誌に出版され、Supplementary Coverにも選出されました。また、千葉大学プレスリリースにも発表されております。

Multistep Crystallization of Pharmaceutical Amorphous Nanoparticles via a Cognate Pathway of Oriented Attachment: Direct Evidence of Nonclassical Crystallization for Organic Molecules

Ziqiao Chen, Kenjirou Higashi, Keisuke Ueda, and Kunikazu Moribe

Nano Lett. 2022, 22, 16, 6841–6846

DOI: doi.org/10.1021/acs.nanolett.2c01608

共同研究者の東 顕二郎 准教授より陳 博士についてコメントを頂戴いたしました!

陳 子喬 博士は、優しい性格の持ち主で、他の学生から研究の相談をされて親身にアドバイスをしている様子は研究室の日常風景です。優しい陳さんですが、一方で自身の研究テーマについては非常に厳しく、一切の妥協はありません。関連論文を徹底的に調べ上げ、戦略的に実験を計画し、データを詳細に解析します。本研究テーマについても、教員を含めて研究室メンバーの誰もが分からなかった現象を、徹底的な論文調査と詳細な解析により次々と明らかにしていく様はまさに圧巻でした。また、読者に伝わりやすいようにと、時間をかけて幾度となく論文推敲を重ねて作った論文のドラフトは、校正の必要がほぼない仕上りでした。本研究は、有機化合物の結晶化理論に新しい知見を与えるものであり、医薬品開発においては特に重要になる画期的な成果です。本論文の発表が決まるまでは小心者の私はやきもきしていましたが、当の陳さんは研究成果に相当な自信があったようで、論文投稿や改訂も楽しんで行っていました。一研究者として頼もしい限りです。陳さんは、アカデミックでの医薬品原薬・製剤開発の基礎研究を引き続き続ける予定であり、有望な若手研究者として今後益々の活躍が期待されます。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

高品質な医薬品の設計と製造には、有効成分の結晶化に関する知見が不可欠です。医薬品有効成分のほとんどは有機化合物ですが、従来から提唱されている古典的核生成理論により結晶化メカニズムを説明できるケースは限られます。これまでに筆者らは、免疫抑制剤であるシクロスポリンAのナノ非晶質の懸濁液を室温で保存すると、ナノ結晶に転移することを報告しています(図1)。

本研究では、この結晶化メカニズム解明を目的に、cryo-TEMを用いてナノ粒子の経時的な形態変化を観察したところ、“oriented attachment”により結晶化が進むことを見出しました。“Oriented attachment”とは、複数のナノ結晶同士が近づく際に結晶格子に沿って向きを変えて整列し(配向:orientation)、接触して合体する(接合:attachment)ことで、より大きな結晶へと成長する結晶化の経路です。図2は、本研究で観察した時間経過毎のシクロスポリンAのナノ粒子の形態変化を表した模式図、及び各経過時間における代表的なcryo-TEM像を示しています。

“Oriented attachment”は古典的結晶化理論とは異なる理論に基づく結晶化プロセスで、これまでの報告は無機化合物に限られていました。本研究において、有機化合物でも”oriented attachment”の経路により結晶化が起きることが初めて示されました。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

実は、cryo-TEM画像(図2)を初めて見た時は、予想と全く異なっていたため、「どこかで実験を失敗してしまった。。」とむしろ落胆していました。ただ、繰り返し実験を行っても同じcryo-TEM像が得られるため、「実際に起きている結果かも?」と、徐々に確信を得るようになりました。とは言え、当初は何の現象か全く見当がつかない状態でした。文献調査を行いましたが、医薬品有効成分はもちろん他の有機化合物についても類似する結果の報告はありませんでした。それでも「面白い現象なので何かしらの報告があるはず!」と考え、異分野も含めて徹底的に調査したところ、無機化合物に関するある論文で報告されていた結晶化が、本研究の結果と類似していることに気づきました。今振り返ってみると、「全く分からなかった実験結果を遂に説明できるかも!」と、その論文を読み進めていた時が、一番エキサイティングであったと思います。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

無機化合物で報告されている結晶化機構が、性質の大きく異なる医薬品有効成分(有機化合物)でも起きることを証明するのに苦労しました。この大きな要因として、結晶化機構の証明のために無機化合物で用いられているTEMの解析手法の多くが、有機化合物に適用できなかったことが挙げられます。そこで、取得できたTEM画像を様々な観点で解析し、さらにX線解析などの他の分析手法を組み合わせた検討を行いました。また、無機化合物の多くの関連論文を熟読し、実験的な証明が難しい点についての議論をサポートしました。最終的に発表した論文では、納得する形で上記の証明が出来たと自負しており、また有機化合物・無機化合物を問わずナノ材料全般を扱うNano Lettersに出版できたことも嬉しく思っています。

Q4. 将来は化学とどう関わっていきたいですか?

私は大学卒業後に、短い期間でしたが中国の製薬会社に勤め、医薬品の原薬形態検討や製剤設計に携わりました。その時に原薬製造現場で、大きな反応釜で大量の原薬(数十~数百kgスケール!)を結晶化する様子を目の当たりにし、医薬品開発における結晶化理論・技術の重要性を実感しました。今回の研究は小さいフラスコ内の少量の原薬(数百mgスケール)について検討したものですが、得られた知見は実際の製薬会社での原薬の形態選択や製造に活かされると期待されるものです。今後も引き続き、医薬品原薬や製剤の基礎的研究をアカデミアで続ける予定ですが、今回の研究のように実際の製薬会社での医薬品開発に役立つような成果を多く挙げられるように尽力していきたいと考えています。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

「発見」は運の要素が大きいですが、一方でこの「発見」を見逃さない力は必須と思います。私は運良く新しい現象と出会うことが出来、また何とかギリギリ見逃さずにこの現象の機構を解明することが出来ました。ただし、もしこの現象を予め知っていれば、「これは新しい発見!」と余裕をもって気づけたとも思います。今回の経験を通して、目の前のことに囚われ過ぎず、視界を広げて、様々な分野に関する知識や経験を多く身に付ける重要性を学びました。予想しなかった結果や、説明できない現象に出会ったら、全くの異分野の論文や研究者に頼ってみるのも良いかもしれません。

最後に、私の留学生活を終始温かくサポート下さり、本研究の遂行にも多くのご助言を頂いた森部 久仁一 教授、東 顕二郎 准教授、植田 圭祐 助教、また、研究室の学生の皆様に深く感謝申し上げます。また本研究を取り上げてくださったChem-Stationのスタッフの皆様に深く感謝申し上げます。

研究者の略歴

名前:陳 子喬(ちん しきょう)

所属:千葉大学大学院薬学研究院 製剤工学研究室

略歴:

2014年8月 南京工業大学薬学部(薬物製剤専攻) 卒業

2015年11月 東陽光薬業股分有限公司 製剤研究員

2018年9月 千葉大学大学院医学薬学府修士課程(総合薬品科学専攻) 修了

2022年3月 千葉大学大学院医学薬学府博士課程(先端創薬科学専攻) 修了

2022年4月~現在 千葉大学大学院薬学研究院 製剤工学研究室 特任研究員

関連リンク

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 【ケムステSlackに訊いてみた①】有機合成を学ぶオススメ参考書…
  2. 斬新な官能基変換を可能にするパラジウム触媒
  3. 化学者のためのエレクトロニクス講座~フォトレジスト編
  4. YMC-DispoPackAT 「ケムステを見た!!」 30%O…
  5. 第39回ケムステVシンポ「AIが拓く材料開発の最前線」を開催しま…
  6. 有機合成化学協会誌2023年5月号:特集号「日本の誇るハロゲン資…
  7. 分析化学科
  8. 光/熱で酸化特性のオン/オフ制御が可能な分子スイッチの創出に成功…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. アジズ・サンジャル Aziz Sancar
  2. BASF International Summer Courses 2017  BASFワークショップ2017
  3. 留学生がおすすめする「大学院生と考える日本のアカデミアの将来2020」
  4. 有機反応の仕組みと考え方
  5. ESIPTを2回起こすESDPT分子
  6. 光学分割 / optical resolution
  7. ブーボー/ボドロー・チチバビン アルデヒド合成 Bouveault/Bodroux-Chichibabin Aldehyde Synthesis
  8. ボイランド・シムズ酸化 Boyland-Sims Oxidation
  9. 基底三重項炭化水素トリアンギュレンの単離に世界で初めて成功
  10. ネオン Neon -街を彩るネオンサイン

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年10月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

十全化学株式会社ってどんな会社?

私たち十全化学は、医薬品の有効成分である原薬及び重要中間体の製造受託を担っている…

化学者と不妊治療

これは理系の夫視点で書いた、私たち夫婦の不妊治療の体験談です。ケムステ読者で不妊に悩まれている方の参…

リボフラビンを活用した光触媒製品の開発

ビタミン系光触媒ジェンタミン®は、リボフラビン(ビタミンB2)を活用した光触媒で…

紅麹を含むサプリメントで重篤な健康被害、原因物質の特定急ぐ

健康食品 (機能性表示食品) に関する重大ニュースが報じられました。血中コレステ…

ユシロ化学工業ってどんな会社?

1944年の創業から培った技術力と信頼で、こっそりセカイを変える化学屋さん。ユシロ化学の事業内容…

日本薬学会第144年会付設展示会ケムステキャンペーン

日本化学会の年会も終わりましたね。付設展示会キャンペーンもケムステイブニングミキ…

ペプチドのN末端でのピンポイント二重修飾反応を開発!

第 605回のスポットライトリサーチは、中央大学大学院 理工学研究科 応用化学専…

材料・製品開発組織における科学的考察の風土のつくりかた ー マテリアルズ・インフォマティクスを活用し最大限の成果を得るための筋の良いテーマとは ー

開催日:2024/03/27 申込みはこちら■開催概要材料開発を取り巻く競争や環境が激し…

石谷教授最終講義「人工光合成を目指して」を聴講してみた

bergです。この度は2024年3月9日(土)に東京工業大学 大岡山キャンパスにて開催された石谷教授…

リガンド効率 Ligand Efficiency

リガンド効率 (Ligand Efficacy: LE) またはリガンド効率指数…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP