[スポンサーリンク]

化学者のつぶやき

近傍PCET戦略でアルコキシラジカルを生成する

[スポンサーリンク]

2016年、プリンストン大学・Robert Knowlesらは、 可視光レドックス触媒を用いることでアルコールから直接的にアルコキシラジカルを発生させることに成功した。また続くC-C結合開裂により、環状3級アルコールからの鎖状ケトン合成を達成した。本反応のキモは分子内プロトン共役型電子移動(PCET)によるアルコールからのアルコキシラジカル生成である。

“Catalytic Ring-Opening of Cyclic Alcohols Enabled by PCET Activation of Strong O–H Bonds”

Yayla, H. G.; Wang, H.; Tarantino, K. T.; Orbe, H. S.; Knowles, R. R.* J. Am. Chem. Soc. 2016, 138, 10794–10797. DOI: 10.1021/jacs.6b06517

問題設定と解決した点

 アルコキシラジカルは生成後、水素原子移動(HAT)かβ-開裂のどちらかの反応を起こすことが知られている。有用な合成中間体である一方、ヒドロキシ基O-H結合のBDEの高さ(105 kcal/mol)ゆえ、アルコールからアルコキシラジカルを直接的に発生させる方法はこれまで知られていなかった。

 Knowlesらは培ってきた光触媒によるPCET活性化法を応用することで、この問題への解決を試みた。

 

技術と手法の肝

 本反応の鍵は近傍電子移動を活用したPCET過程にある。

 PCET過程によると、一電子酸化剤とブレンステッド塩基が協奏的に働くことによって、基質からプロトンと電子が同時に奪われ、酸化的にO-H結合の開裂が起きる過程が速度論的に有利となる。

 一方で、近傍にアリールラジカルカチオンを据えておくと、近接したアルコールからアルコキシラジカルが生じる事実が知られている[1]。Knowlesらはこれに着目して検討を行った。

 

主張の有効性検証

①反応条件の最適化

 冒頭図のようなPMP置換シクロヘキサノールを用いて条件検討を行っている。広く用いられているIr(dF(CF3)ppy)2(dtbbpy)(PF6)(1.22V vs SCE)では基質の酸化を行えず、より酸化力の強いIr-dCF3錯体 (1.30V vs SCE、冒頭図)を用いている。

 光・光触媒・ブレンステッド塩基いずれが欠けても反応は進行しない。

 チオフェノールなしでも50%収率で反応は進行することから、おそらくコリジンのベンジル位C-HでHATを起こす経路が競合していると考えられる。

②基質一般性の検討

 非対称化合物を基質とする場合、安定なラジカルを生成する方向で反応は進行する(ヘテロ原子隣接位など)。PMP に近いアルコールと遠いアルコールで、選択的な反応が可能(ステロイドの例)。鎖状アルコールでも同様のβ-開裂を起こしてケトンを与える。ラジカル捕捉剤をチオフェノールから変更することで、各種ハロゲン化も可能。PMP置換位置はアルコールα位でなくてもよく、γ位程度までは許容される。

③反応機構に関する示唆

 Stern-Volmer実験により、励起状態にあるIr(III)触媒と基質間との電子のやり取りは、PMPの1電子酸化のみであることを示している。

 続くO-H結合の開裂は、PT/ETでなく、PCETで進行していると考察されている。アルコールプロトンををコリジンで引き抜く過程が不利である(ΔGo = +34 kcal/mol)こと、Ir(II)とアリールラジカルカチオンの逆反応が有利である(ΔGo = -53 kcal/mol)ことを理由として挙げている。

 PCETの過程はエネルギー的に有利であり(ΔGo = -1 kcal/mol)、δ位より遠隔にPMPが存在すると反応が進行しづらく成るという実験結果ともおおむね一致する。

 また、アリール基をPMPから他の電子豊富なものに変え、塩基との組み合わせも様々に変えてBDFEごとに反応進行を調査している。その結果、102 kcal/mol近くかそれを超える組み合わせでは反応は進行することがわかった。PCET が起こるか否かを予測するのに有用な情報といえる。

冒頭論文より引用

議論すべき点

  • この概念をHAT触媒に応用することを考えた場合、光触媒とPMP基の間で電子移動起こるかどうかをまず調べるのが効率的。Mechanism-Based Screening はこの目的にかなり使い勝手の良い考え方となる。
  • アルコキシラジカルからC-C 開裂とHAT が起こる速度もいろいろと調べられている。

参考文献

  1. Baciocchi, E.; Bietti,M.; Lanzalunga, O. Acc. Chem. Res. 2000, 33, 243. DOI: 10.1021/ar980014y

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. C–NおよびC–O求電子剤間の還元的クロスカップリング
  2. 分子を見分けるプラスチック「分子刷り込み高分子」(基礎編)
  3. 原子3個分の直径しかない極細ナノワイヤーの精密多量合成
  4. 金属アルコキシドに新たなファミリー!Naでも切れない絆
  5. マイクロプラスチックの諸問題
  6. 研究室でDIY! ~明るい棚を作ろう~
  7. ペプチドの草原にDNAの花を咲かせて、水中でナノスケールの花畑を…
  8. 研究室でDIY!~エバポ用真空制御装置をつくろう~ ②

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ジアゾメタン原料
  2. ジボラン(diborane)
  3. 有機機能性色素におけるマテリアルズ・インフォマティクスの活用とは?
  4. メソポーラスシリカ(1)
  5. 地域の光る化学企業たち-1
  6. 【日産化学】画期的な生物活性を有する新規除草剤の開発  ~ジオキサジン環に苦しみ、笑った日々~
  7. エチルマグネシウムクロリド(活性化剤:塩化亜鉛):Ethylmagnesium Chloride activated with Zinc Chloride
  8. ケムステのライターになって良かったこと
  9. コロナウイルスCOVID-19による化学研究への影響を最小限にするために
  10. 有機化学者の仕事:製薬会社

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年6月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

第8回 学生のためのセミナー(企業の若手研究者との交流会)

有機合成化学協会が学生会員の皆さんに贈る,交流の場有機化学を武器に活躍する,本当の若手研究者を知ろう…

UBEの新TVCM『ストーリーを変える、ケミストリー』篇、放映開始

UBE株式会社は、2023年9月1日より、新TVCM『ストーリーを変える、ケミストリー』篇を関東エリ…

有機合成化学協会誌2023年9月号:大村天然物・ストロファステロール・免疫調節性分子・ニッケル触媒・カチオン性芳香族化合物

有機合成化学協会が発行する有機合成化学協会誌、2023年9月号がオンライン公開されています。…

ペプチドの精密な「立体ジッパー」構造の人工合成に成功

第563回のスポットライトリサーチは、東京大学大学院 工学系研究科応用化学専攻 藤田研究室の恒川 英…

SNS予想で盛り上がれ!2023年ノーベル化学賞は誰の手に?

さてことしもいよいよ、ノーベル賞シーズンが到来します!化学賞は日本時間 10月4日(水) 18時45…

ケムステ版・ノーベル化学賞候補者リスト【2023年版】

各媒体からかき集めた情報を元に、「未来にノーベル化学賞の受賞確率がある、存命化学者」をリストアップし…

DMFを選択的に検出するセンサー:アミド分子と二次元半導体の特異な相互作用による検出原理を発見

第562回のスポットライトリサーチは、大阪府立大学(現:大阪公立大学)大学院 工学研究科 電子・数物…

イグノーベル賞2023が発表:祝化学賞復活&日本人受賞

今年もノーベル賞とイグノーベル賞の季節がやってきました。今年もケムステではどちらについても全速力で記…

ポンコツ博士の海外奮闘録XXII ~博士,海外学会を視察する~

ポンコツシリーズ国内編:1話・2話・3話国内外伝:1話・2話・留学TiPs海外編:1話・…

マテリアルズ・インフォマティクスの導入・活用・推進におけるよくある失敗とその対策とは?

開催日:2023/09/20 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP