[スポンサーリンク]

化学者のつぶやき

近傍PCET戦略でアルコキシラジカルを生成する

[スポンサーリンク]

2016年、プリンストン大学・Robert Knowlesらは、 可視光レドックス触媒を用いることでアルコールから直接的にアルコキシラジカルを発生させることに成功した。また続くC-C結合開裂により、環状3級アルコールからの鎖状ケトン合成を達成した。本反応のキモは分子内プロトン共役型電子移動(PCET)によるアルコールからのアルコキシラジカル生成である。

“Catalytic Ring-Opening of Cyclic Alcohols Enabled by PCET Activation of Strong O–H Bonds”

Yayla, H. G.; Wang, H.; Tarantino, K. T.; Orbe, H. S.; Knowles, R. R.* J. Am. Chem. Soc. 2016, 138, 10794–10797. DOI: 10.1021/jacs.6b06517

問題設定と解決した点

 アルコキシラジカルは生成後、水素原子移動(HAT)かβ-開裂のどちらかの反応を起こすことが知られている。有用な合成中間体である一方、ヒドロキシ基O-H結合のBDEの高さ(105 kcal/mol)ゆえ、アルコールからアルコキシラジカルを直接的に発生させる方法はこれまで知られていなかった。

 Knowlesらは培ってきた光触媒によるPCET活性化法を応用することで、この問題への解決を試みた。

 

技術と手法の肝

 本反応の鍵は近傍電子移動を活用したPCET過程にある。

 PCET過程によると、一電子酸化剤とブレンステッド塩基が協奏的に働くことによって、基質からプロトンと電子が同時に奪われ、酸化的にO-H結合の開裂が起きる過程が速度論的に有利となる。

 一方で、近傍にアリールラジカルカチオンを据えておくと、近接したアルコールからアルコキシラジカルが生じる事実が知られている[1]。Knowlesらはこれに着目して検討を行った。

 

主張の有効性検証

①反応条件の最適化

 冒頭図のようなPMP置換シクロヘキサノールを用いて条件検討を行っている。広く用いられているIr(dF(CF3)ppy)2(dtbbpy)(PF6)(1.22V vs SCE)では基質の酸化を行えず、より酸化力の強いIr-dCF3錯体 (1.30V vs SCE、冒頭図)を用いている。

 光・光触媒・ブレンステッド塩基いずれが欠けても反応は進行しない。

 チオフェノールなしでも50%収率で反応は進行することから、おそらくコリジンのベンジル位C-HでHATを起こす経路が競合していると考えられる。

②基質一般性の検討

 非対称化合物を基質とする場合、安定なラジカルを生成する方向で反応は進行する(ヘテロ原子隣接位など)。PMP に近いアルコールと遠いアルコールで、選択的な反応が可能(ステロイドの例)。鎖状アルコールでも同様のβ-開裂を起こしてケトンを与える。ラジカル捕捉剤をチオフェノールから変更することで、各種ハロゲン化も可能。PMP置換位置はアルコールα位でなくてもよく、γ位程度までは許容される。

③反応機構に関する示唆

 Stern-Volmer実験により、励起状態にあるIr(III)触媒と基質間との電子のやり取りは、PMPの1電子酸化のみであることを示している。

 続くO-H結合の開裂は、PT/ETでなく、PCETで進行していると考察されている。アルコールプロトンををコリジンで引き抜く過程が不利である(ΔGo = +34 kcal/mol)こと、Ir(II)とアリールラジカルカチオンの逆反応が有利である(ΔGo = -53 kcal/mol)ことを理由として挙げている。

 PCETの過程はエネルギー的に有利であり(ΔGo = -1 kcal/mol)、δ位より遠隔にPMPが存在すると反応が進行しづらく成るという実験結果ともおおむね一致する。

 また、アリール基をPMPから他の電子豊富なものに変え、塩基との組み合わせも様々に変えてBDFEごとに反応進行を調査している。その結果、102 kcal/mol近くかそれを超える組み合わせでは反応は進行することがわかった。PCET が起こるか否かを予測するのに有用な情報といえる。

冒頭論文より引用

議論すべき点

  • この概念をHAT触媒に応用することを考えた場合、光触媒とPMP基の間で電子移動起こるかどうかをまず調べるのが効率的。Mechanism-Based Screening はこの目的にかなり使い勝手の良い考え方となる。
  • アルコキシラジカルからC-C 開裂とHAT が起こる速度もいろいろと調べられている。

参考文献

  1. Baciocchi, E.; Bietti,M.; Lanzalunga, O. Acc. Chem. Res. 2000, 33, 243. DOI: 10.1021/ar980014y
cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 酵素触媒によるアルケンのアンチマルコフニコフ酸化
  2. フローシステムでペプチド合成を超高速化・自動化
  3. 室温で緑色発光するp型/n型新半導体を独自の化学設計指針をもとに…
  4. アミジルラジカルで遠隔位C(sp3)-H結合を切断する
  5. 美麗な分子モデルを描きたい!!
  6. 海外の教授にメールを送る-使える英語表現と文例
  7. Late-Stage C(sp3)-H活性化法でステープルペプチ…
  8. 2005年ノーベル化学賞『オレフィンメタセシス反応の開発』

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 核酸塩基は4つだけではない
  2. NHCが触媒する不斉ヒドロフッ素化
  3. 耐熱性生分解プラスチック開発 150度でも耐用 阪大
  4. 三菱商事ナノテク子会社と阪大院、水に濡れるフラーレンを共同開発
  5. キラルアニオン相関移動-パラジウム触媒系による触媒的不斉1,1-ジアリール化反応
  6. ノリッシュ反応 Norrish Reaction
  7. 製薬各社 2011年度 第2四半期決算
  8. 天然イミンにインスパイアされたペプチド大環状化反応
  9. パーコウ反応 Perkow Reaction
  10. 色素増感型太陽電池 / Dye-sensitized Solar Cells

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

クラリベイト・アナリティクスが「引用栄誉賞2020」を発表!

9月23日に、クラリベイト・アナリティクス社から、2020年の引用栄誉賞が発表されました。こ…

アズワンが第一回ケムステVプレミアレクチャーに協賛しました

さて先日お知らせいたしましたが、ケムステVプレミアクチャーという新しい動画配信コンテンツをはじめます…

化学者のためのエレクトロニクス講座~代表的な半導体素子編

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLE…

第121回―「亜鉛勾配を検出する蛍光分子の開発」Lei Zhu教授

第121回の海外化学者インタビューは、Lei Zhu教授です。フロリダ州立大学 化学・生化学科で、亜…

高知市で「化学界の権威」を紹介する展示が開催中

明治から昭和にかけて“化学界の権威”として活躍した高知出身の化学者=近重真澄を紹介する展示が高知市で…

ケムステバーチャルプレミアレクチャーの放送開始決定!

主に最先端化学に関する講演者をテーマ別で招待しオンライン講演を行っていただくケムステバーチャルシンポ…

分子運動を世界最高速ムービーで捉える!

第275回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 博士課程・清水俊樹 さんに…

「未来博士3分間コンペティション2020」の挑戦者を募集

科学技術人材育成のコンソーシアムの構築事業(次世代研究者育成プログラム)「未来を拓く地方協奏プラ…

Chem-Station Twitter

PAGE TOP